Journal of Nanoparticle Research

, Volume 13, Issue 3, pp 1029–1037 | Cite as

Characterization of English ivy (Hedera helix) adhesion force and imaging using atomic force microscopy

  • Lijin Xia
  • Scott C. Lenaghan
  • Mingjun ZhangEmail author
  • Yu Wu
  • Xiaopeng Zhao
  • Jason N. Burris
  • C. Neal StewartJr.
Research Paper


English ivy (Hedera helix) is well known for its ability to climb onto and strongly adhere to a variety of solid substrates. It has been discovered that the ivy aerial rootlet secretes an adhesive composed of polysaccharide and spherical nanoparticles. This study aims to characterize the mechanical properties of the nanocomposite adhesive using atomic force microscopy (AFM). The adhesive was first imaged by AFM to visualize the nanocomposite. Mechanical properties were then determined at various time points, from secretion to hardening. The experimental results indicate that the ivy adhesive exhibited strong adhesion strength and high elasticity. There was a decrease in adhesive force over time, from 298 to 202 nN during the 24-h study. Accompanying with it were the limited changes in extension length and Young’s modulus. The limited curing process of the ivy adhesive helps fill gaps in the attaching surface, leading to more intimate contact and increased van der Waals interactions with the surface. However, study based on a mechanical model indicated that van der Waals force alone is not significant enough to account for all of the measured force. Other chemical interactions and cross linking likely contribute to the strong adhesion strength of ivy.


Ivy Nanoparticle Adhesion force Atomic force microscopy Nanobiotechnology 



This research is sponsored by the US Army Research Office, Life Sciences Division, Biochemistry Program under the contract W911NF-10-1-0114. We would like to thank Susan Brocker for her assistance with the tissue culture work. Burris and Stewart’s work are partially funded by the Tennessee Agricultural Experiment Station.


  1. Aoki T, Hiroshima M, Kitamura K, Tokunaga M, Yanagida T (1997) Non-contact scanning probe microscopy with sub-piconewton force sensitivity. Ultramicroscopy 70(1–2):45–55. doi: 10.1016/S0304-3991(97)00069-7 CrossRefGoogle Scholar
  2. Autumn K, Sitti M, Liang YA, Peattie AM, Hansen WR, Sponberg S, Kenny TW, Fearing R, Israelachvili JN, Full RJ (2002) Evidence for van der Waals adhesion in gecko setae. Proc Natl Acad Sci USA 99(19):12252–12256. doi: 10.1073/pnas.192252799 CrossRefGoogle Scholar
  3. Berglin M, Gatenholm P (2003) The barnacle adhesive plaque: morphological and chemical differences as a response to substrate properties. Colloids Surf B 28(2–3):107–117. doi: 10.1016/S0927-7765(02)00149-2 CrossRefGoogle Scholar
  4. Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56(9):930–933. doi: 10.1103/PhysRevLett.56.930 CrossRefGoogle Scholar
  5. Callow JA, Stanley MS, Wetherbee R, Callow ME (2000) Cellular and molecular approaches to understanding primary adhesion in enteromorpha: an overview. Biofouling 16(2):141–150. doi: 10.1080/08927010009378439 CrossRefGoogle Scholar
  6. Châtellier X et al (1998) Detachment of a single polyelectrolyte chain adsorbed on a charged surface. Europhys Lett 41(3):303. doi: 10.1209/epl/i1998-00147-6 CrossRefGoogle Scholar
  7. Corkery RW, Fleischer C, Daly RC (2008) Polymeric adhesive including nanoparticle filler. US Patent WO/2008/124389, 16 Oct 2008Google Scholar
  8. Darwin CR (1876) The movements and habits of climbing plants. D. Appleton and company, New YorkGoogle Scholar
  9. Endress AG, Thomson WW (1976) Ultrastructural and cytochemical studies on the developing adhesive disc of Boston ivy tendrils. Protoplasma 88(2):315–331. doi: 10.1007/BF01283255 CrossRefGoogle Scholar
  10. Endress AG, Thomson WW (1977) Adhesion of the Boston ivy tendril. Can J Bot 55(8):918–924. doi: 10.1139/b77-112 CrossRefGoogle Scholar
  11. Gao H, Yao H (2004) Shape insensitive optimal adhesion of nanoscale fibrillar structures. Proc Natl Acad Sci USA 101(21):7851–7856. doi: 10.1073/pnas.0400757101 CrossRefGoogle Scholar
  12. Gay C, Leibler L (1999) Theory of tackiness. Phys Rev Lett 82(5):936. doi: 10.1103/PhysRevLett.82.936 CrossRefGoogle Scholar
  13. Grinevich O, Mejiritski A, Neckers DC (1999) AFM force–distance curve methods for measuring the kinetics of silicon chemical etching and reactions between silylating agents and a silicon surface. Langmuir 15(6):2077–2079. doi: 10.1021/la981107r CrossRefGoogle Scholar
  14. Hennebert E, Viville P, Lazzaroni R, Flammang P (2008) Micro- and nanostructure of the adhesive material secreted by the tube feet of the sea star asterias rubens. J Struct Biol 164(1):108–118. doi: 10.1016/j.jsb.2008.06.007 CrossRefGoogle Scholar
  15. Israelachvili JN (1992) Intermolecular and surface forces. Second edition: with applications to colloidal and biological systems (colloid science) edn. Academic Press, New YorkGoogle Scholar
  16. Jennifer A, Jun W (2003) Evolution of hedera (the ivy genus, araliaceae): insights from chloroplast DNA data. Int J Plant Sci 164(4):593–602. doi: 10.2307/3691873 CrossRefGoogle Scholar
  17. Johnson KL, Kendall K, Roberts AD (1971) Surface energy and the contact of elastic solids. Proc R Soc London A 324(1):301–313. doi: 10.1098/rspa.1971.0141 CrossRefGoogle Scholar
  18. Matthias R, Filipp O, Berthold H, Hermann EG (1997) Single molecule force spectroscopy on polysaccharides by atomic force microscopy. Science 275(5):1295–1297. doi: 10.2307/2892391 CrossRefGoogle Scholar
  19. Melzer B, Steinbrecher T, Seidel R, Kraft O, Schwaiger R, Speck T (2010) The attachment strategy of English ivy: a complex mechanism acting on several hierarchical levels. J R Soc Interface 7(50):1383–1389. doi: 10.1098/rsif.2010.0140 CrossRefGoogle Scholar
  20. Moens P (1956) Ontogenese des vrilles et differenciation des ampoules adhesives chez quelques vegetaux (ampelopsis, bignonia, glaziovia). Cellule 57:369–401Google Scholar
  21. Muller DJ, Dufrene YF (2008) Atomic force microscopy as a multifunctional molecular toolbox in nanobiotechnology. Nat Nanotechnol 3(5):261–269. doi: 10.1038/nnano.2008.100 CrossRefGoogle Scholar
  22. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15(3):473–497. doi: 10.1111/j.1399-3054.1962.tb08052.x CrossRefGoogle Scholar
  23. Noy A (2006) Chemical force microscopy of chemical and biological interactions. Surf Interface Anal 38(11):1429–1441. doi: 10.1002/sia.2374 CrossRefGoogle Scholar
  24. Panyam J, Labhasetwar V (2003) Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev 55(3):329–347. doi: 10.1016/S0169-409X(02)00228-4 CrossRefGoogle Scholar
  25. Peattie AM, Full RJ (2007) Phylogenetic analysis of the scaling of wet and dry biological fibrillar adhesives. Proc Natl Acad Sci USA 104(47):18595–18600. doi: 10.1073/pnas.0707591104 CrossRefGoogle Scholar
  26. Steinbrecher T, Danninger E, Harder D, Speck T, Kraft O, Schwaiger R (2010) Quantifying the attachment strength of climbing plants: a new approach. Acta Biomater 6(4):1497–1504. doi: 10.1016/j.actbio.2009.10.003 CrossRefGoogle Scholar
  27. Stevens MJ, Steren RE, Hlady V, Stewart RJ (2007) Multiscale structure of the underwater adhesive of phragmatopoma californica: a nanostructured latex with a steep microporosity gradient. Langmuir 23(9):5045–5049. doi: 10.1021/la063765e CrossRefGoogle Scholar
  28. Sun W, Neuzil P, Kustandi TS, Oh S, Samper VD (2005) The nature of the gecko lizard adhesive force. Biophys J 89(2):L14–L17. doi: 10.1529/biophysj.105.065268 CrossRefGoogle Scholar
  29. Urushida Y, Nakano M, Matsuda S, Inoue N, Kanai S, Kitamura N, Nishino T, Kamino K (2007) Identification and functional characterization of a novel barnacle cement protein. FEBS J 274(16):4336–4346. doi: 10.1111/j.1742-4658.2007.05965.x CrossRefGoogle Scholar
  30. Wang T, Lei C-H, Dalton AB, Creton C, Lin Y, Fernando KAS, Sun Y-P, Manea M, Asua JM, Keddie JL (2006) Waterborne, nanocomposite pressure-sensitive adhesives with high tack energy, optical transparency, and electrical conductivity. Adv Mater 18(20):2730–2734. doi: 10.1002/adma.200601335 CrossRefGoogle Scholar
  31. Waychunas GA, Zhang H (2008) Structure, chemistry, and properties of mineral nanoparticles. Elements 4(6):381–387. doi: 10.2113/gselements.4.6.381 CrossRefGoogle Scholar
  32. Wu Y, Zhao X, Zhang M (2010) Adhesion mechanics of ivy nanoparticles. J Colloid Interface Sci 344(2):533–540. doi: 10.1016/j.jcis.2009.12.041 CrossRefGoogle Scholar
  33. Xia L, Lenaghan S, Zhang M, Zhang Z, Li Q (2010) Naturally occurring nanoparticles from English ivy: an alternative to metal-based nanoparticles for UV protection. J Nanobiotechnol 8(1):12. doi: 10.1186/1477-3155-8-12 CrossRefGoogle Scholar
  34. Xing M, Zhong W, Xu X, Thomson D (2010) Adhesion force studies of nanofibers and nanoparticles. Langmuir 26(14):11809–11814. doi: 10.1021/la100443d CrossRefGoogle Scholar
  35. Zhai L, Ling G, Li J, Wang Y (2006) The effect of nanoparticles on the adhesion of epoxy adhesive. Mater Lett 60(25–26):3031–3033. doi: 10.1016/j.matlet.2006.02.038 CrossRefGoogle Scholar
  36. Zhang M, Liu M, Prest H, Fischer S (2008) Nanoparticles secreted from ivy rootlets for surface climbing. Nano Lett 8(5):1277–1280. doi: 10.1021/nl0725704 CrossRefGoogle Scholar
  37. Zhang M, Liu M, Bewick S, Suo Z (2009) Nanoparticles to increase adhesive properties of biologically secreted materials for surface affixing. J Biomed Nanotechnol 5:294–299. doi: 10.1166/jbn.2009.1034 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Lijin Xia
    • 1
  • Scott C. Lenaghan
    • 1
  • Mingjun Zhang
    • 1
    Email author
  • Yu Wu
    • 1
  • Xiaopeng Zhao
    • 1
  • Jason N. Burris
    • 2
  • C. Neal StewartJr.
    • 2
  1. 1.Department of Mechanical, Aerospace and Biomedical EngineeringUniversity of TennesseeKnoxvilleUSA
  2. 2.Department of Plant SciencesUniversity of TennesseeKnoxvilleUSA

Personalised recommendations