Skip to main content
Log in

Magnetic ionic liquid-assisted synthesis of polyaniline/AgCl nanocomposites by interface polymerization

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

An Erratum to this article was published on 09 December 2010

Abstract

A simple strategy for the one-step synthesis of polyaniline/AgCl nanocomposites at the water/magnetic ionic liquid interface was reported. By controlling the reactive conditions, highly dispersed polyaniline/AgCl nanocomposites with their size ranging around 50–80 nm were obtained with magnetic ionic liquid as the oxidant. Transmission electron microscopy was used to show the morphology of the nanocomposites. The nanocomposites were also characterized by Fourier transform infrared spectroscopy, X-ray diffraction, and thermogravimetric analysis. Moreover, polyaniline/AgCl nanocomposites on a glassy carbon electrode showed strong electrocatalytic activity for H2O2 and could be used to construct a H2O2 biosensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmad S, Deepa M, Singh S (2007) Electrochemical synthesis and surface characterization of poly(3, 4-ethylenedioxythiophene) films grown in an ionic liquid. Langmuir 23:11430–11433

    Article  CAS  Google Scholar 

  • Chen SJ, Chen W, Xue G (2008) Electrogeneration of polypyrrole/alginate films for immobilization of glucose oxidase. Macromol Biosci 8:478–483

    Article  CAS  Google Scholar 

  • Davis JH, Fox PA (2003) From curiosities to commodities: ionic liquids begin the transition. Chem Commun 11:1209–1212

    Article  Google Scholar 

  • Dinda E, Si S, Kotal A, Mandal TK (2008) Novel ascorbic acid based ionic liquids for the in situ synthesis of quasi-spherical and anisotropic gold nanostructures in aqueous medium. Chem Eur J 14:5528–5537

    Article  CAS  Google Scholar 

  • Gao Y, Jiang P, Liu DF, Yuan HJ, Yan XQ, Zhou ZP, Wang JX, Song L, Liu LF, Zhou WY, Wang G, Wang CY, Xie SS, Zhang JM, Shen AY (2004) Evidence for the monolayer assembly of poly(vinylpyrrolidone) on the surfaces of silver nanowires. J Phys Chem B 108:12877–12881

    Article  CAS  Google Scholar 

  • Ghosh P, Siddhanta SK, Chakrabarti A (1999) Characterization of poly(vinyl pyrrolidone) modified polyaniline prepared in stable aqueous medium. Eur Polym J 35:699–710

    Article  CAS  Google Scholar 

  • Huang JX, Virji S, Weiller BH, Kaner RB (2003) Polyaniline nanofibers: facile synthesis and chemical sensors. J Am Chem Soc 125:314–315

    Article  CAS  Google Scholar 

  • Kinyanjui JM, Harris-Burr R, Wagner JG, Wijeratne NR, Hatchett DW (2004) Hexachloroplatinate-initiated synthesis of polyaniline/platinum composite. Macromolecules 37:8745–8753

    Article  CAS  Google Scholar 

  • Kubisa P (2005) Ionic liquids in the synthesis and modification of polymers. J Polym Sci Polym Chem 43:4675–4683

    Article  CAS  Google Scholar 

  • Li D, Kaner RB (2007) How nucleation affects the aggregation of nanoparticles. J Mater Chem 17:2279–2282

    Article  CAS  Google Scholar 

  • Li L, Huang Y, Yan G, Liu F, Huang Z, Ma Z (2009) Poly(3, 4-ethylenedioxythiophene) nanospheres synthesized in magnetic ionic liquid. Mater Lett 63:8–10

    Article  CAS  Google Scholar 

  • Li ZF, Swihart MT, Ruckenstein E (2004) Luminescent silicon nanoparticles capped by conductive polyaniline through the self-assembly method. Langmuir 20:1963–1971

    Article  CAS  Google Scholar 

  • Lo MY, Zhen C, Lauters M, Jabbour GE, Sellinger A (2007) Organic-inorganic hybrids based on pyrene functionalized octavinylsilsesquioxane cores for application in OLEDs. J Am Chem Soc 129:5808–5809

    Article  CAS  Google Scholar 

  • Lu W, Mattes BR (2005) Factors influencing electrochemical actuation of polyaniline fibers in ionic liquids. Synth Met 152:53–56

    Article  CAS  Google Scholar 

  • McQuade DT, Pullen AE, Swager TM (2000) Conjugated polymer-based chemical sensors. Chem Rev 100:2537–2574

    Article  CAS  Google Scholar 

  • Murugesan R, Anitha G, Subramanian E (2004) Multi-faceted role of blended poly(vinyl pyrrolidone) leading to remarkable improvement in characteristics of polyaniline emeraldine salt. Mater Chem Phys 85:184–194

    Article  CAS  Google Scholar 

  • Pillalamarri SK, Blum FD, Tokuhiro AT, Bertino MF (2005a) One-pot synthesis of polyaniline—metal nanocomposites. Chem Mater 17:5941–5944

    Article  CAS  Google Scholar 

  • Pillalamarri SK, Blum FD, Tokuhiro AT, Story JG, Bertino MF (2005b) Radiolytic synthesis of polyaniline nanofibers: a new templateless pathway. Chem Mater 17:227–229

    Article  CAS  Google Scholar 

  • Pringle JM, Ngamna O, Lynam C, Wallace GG, Forsyth M, MacFarlane DR (2007) Conducting polymers with fibrillar morphology synthesized in a biphasic ionic liquid/water system. Macromolecules 40:2702–2711

    Article  CAS  Google Scholar 

  • Qiu Y, Gao L (2005) Novel polyaniline/titanium nitride nanocomposite: controllable structures and electrical/electrochemical properties. J Phys Chem B 109:19732–19740

    Article  CAS  Google Scholar 

  • Quillard S, Louarn G, Lefrant S, Macdiarmid AG (1994) Vibrational analysis of polyaniline—a comparative-study of leucoemeraldine, emeraldine, and pernigraniline bases. Phys Rev B 50:12496–12508

    Article  Google Scholar 

  • Randriamahazaka H, Plesse C, Teyssie D, Chevrot C (2005) Charging/discharging kinetics of poly(3,4-ethylenedioxythiophene) in 1-ethyl-3-methylimidazolium bis-(trifluoromethylsulfonyl)imide ionic liquid under galvanostatic conditions. Electrochim Acta 50:4222–4229

    Article  CAS  Google Scholar 

  • Rickert PG, Antonio MR, Firestone MA, Kubatko KA, Szreder T, Wishart JF, Dietz ML (2007) Tetraalkylphosphonium polyoxometalate ionic liquids: novel, organic-inorganic hybrid materials. J Phys Chem B 111:4685–4692

    Article  CAS  Google Scholar 

  • Sarma TK, Chowdhury D, Paul AJ (2002) Synthesis of Au nanoparticle-conductive polyaniline composite using H2O2 as oxidising as well as reducing agent. Chem Commun 10:1048–1049

    Article  Google Scholar 

  • Shin HS, Yang HJ, Kim SB (2004) Mechanism of growth of colloidal silver nanoparticles stabilized by polyvinyl pyrrolidone in gamma-irradiated silver nitrate solution. J Colloid Interface Sci 274:89–94

    Article  CAS  Google Scholar 

  • Sitze MS, Schreiter ER, Patterson EV, Freeman RG (2001) Ionic liquids based on FeCl3 and FeCl2. Raman scattering and ab initio calculations. Inorg Chem 40:2298–2304

    Article  CAS  Google Scholar 

  • Sui XM, Chu Y, Xing SX, Liu CZ (2004) Synthesis of PANI/AgCl, PANI/BaSO4 and PANI/TiO2 nanocomposites in CTAB/hexanol/water reverse micelle. Mater Lett 58:1255–1259

    Article  CAS  Google Scholar 

  • Thanpitcha T, Sirivat A, Jamieson AM, Rujiravanit R (2009) Polyaniline nanoparticles with controlled sizes using a cross-linked carboxymethyl chitin template. J Nanopart Res 11:1167–1177

    Article  CAS  Google Scholar 

  • Trewyn BG, Whitman CM, Lin VSY (2004) Morphological control of room-temperature ionic liquid templated mesoporous silica nanoparticles for controlled release of antibacterial agents. Nano Lett 4:2139–2143

    Article  CAS  Google Scholar 

  • Tseng RJ, Huang JX, Ouyang J, Kaner RB, Yang Y (2005) Polyaniline nanofiber/gold nanoparticle nonvolatile memory. Nano Lett 5:1077–1080

    Article  CAS  Google Scholar 

  • Welton T (1999) Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev 99:2071–2083

    Article  CAS  Google Scholar 

  • Xia HS, Wang Q (2002) Ultrasonic irradiation: a novel approach to prepare conductive polyaniline/nanocrystalline titanium oxide composites. Chem Mater 14:2158–2165

    Article  CAS  Google Scholar 

  • Yan W, Feng X, Chen X, Li X, Zhu JJ (2008) A selective dopamine biosensor based on AgCl@polyaniline core-shell nanocomposites. Bioelectrochemistry 72:21–27

    Article  CAS  Google Scholar 

  • Yang W, Liu J, Zheng R, Liu Z, Dai Y, Chen G, Ringer S, Braet F (2008) Ionic liquid-assisted synthesis of polyaniline/gold nanocomposite and its biocatalytic application. Nanoscale Res Lett 3:468–472

    Article  CAS  Google Scholar 

  • Yu Y, Che B, Si Z, Li L, Chen W, Xue G (2005) Carbon nanotube/polyaniline core-shell nanowires prepared by in situ inverse microemulsion. Synth Met 150:271–277

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The study is supported by the Educational Bureau of Hubei Province (Q20091508), the Scientific Research Key Project of Ministry of Education of China (209081), the State Key Laboratory of Coordination Chemistry (Nanjing University), and the National Natural Science Foundation of China (20904044).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Li.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s11051-010-0126-9

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Q., Liu, F., Li, L. et al. Magnetic ionic liquid-assisted synthesis of polyaniline/AgCl nanocomposites by interface polymerization. J Nanopart Res 13, 415–421 (2011). https://doi.org/10.1007/s11051-010-0070-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-010-0070-8

Keywords

Navigation