Journal of Nanoparticle Research

, Volume 13, Issue 1, pp 1–13 | Cite as

General approach for fabricating nanoparticle arrays via patterned block copolymer nanoreactors

Research Paper

Abstract

A general approach to fabricate nanoparticle arrays of different kinds of materials is demonstrated in this paper. It was found that the center-to-center distance of the nanoparticles or the nanoclusters can be controlled using patterned block copolymer nanoreactors by adding polystyrene (PS) homopolymer to poly(styrene-b-4-vinylpyridine) (PS-b-P4VP) diblock copolymer thin film. The number of the nanoparticles formed in the P4VP nanodomains can also be adjusted by addition of polystyrene (PS) homopolymer to poly(styrene-b-4-vinylpyridine) (PS-b-P4VP) diblock copolymer. In fabrication of Au nanoparticle arrays, HAuCl4 precursor was directly loaded into P4VP nanodomains of the diblock copolymer thin film by using a methanol solvent, which is a good solvent for P4VP but non-solvent for PS. The Au nanoparticle arrays were then obtained by reducing HAuCl4 with sodium citrate dihydrate, and then in situ transferred to silicon substrate by a two-step calcination method. ZnO and FexOy nanoparticle arrays were also synthesized by this approach with thermal decomposition and double decomposition reactions, respectively. Additionally, the advantage of using two-step calcination method over the air plasma method was discussed.

Keywords

Nanoparticle array Block copolymer Nanoreactor Patterning Nanomanufacturing 

References

  1. Ansari IA, Hamley IW (2003) Templating the patterning of gold nanoparticles using a stained triblock copolymer film surface. J Mater Chem 13:2412–2413CrossRefGoogle Scholar
  2. Baek IC, Vithal M, Chang JA, Yum JH, Nazeeruddin MK, Grätzel M, Chung YC, Seok SI (2009) Facile preparation of large aspect ratio ellipsoidal anatase TiO2 nanoparticles and their application to dye-sensitized solar cell. Electrochem Commun 11:909–912CrossRefGoogle Scholar
  3. Bang J, Jeong U, Ryu DY, Russell TP, Hawker CJ (2009) Block copolymer nanolithography: translation of molecular level control to nanoscale patterns. Adv Mater 21:4769–4792CrossRefGoogle Scholar
  4. Braun CH, Richter TV, Schacher F, Müller AHE, Crossland EJW, Ludwigs S (2010) Block copolymer micellar nanoreactors for the directed synthesis of ZnO nanoparticles. Macromol Rapid Commun 31:729–734CrossRefGoogle Scholar
  5. Chai JA, Buriak JM (2008) Using cylindrical domains of block copolymers to self-assemble and align metallic nanowires. ACS Nano 2:489–501CrossRefGoogle Scholar
  6. Chai JA, Wang D, Fan XN, Buriak JM (2007) Assembly of aligned linear metallic patterns on silicon. Nat Nanotechnol 2:500–506CrossRefGoogle Scholar
  7. Chang SW, Chuang VP, Boles ST, Ross CA, Thompson CV (2009a) Densely packed arrays of ultra-high-aspect-ratio silicon nanowires fabricated using block-copolymer lithography and metal-assisted etching. Adv Funct Mater 19:2495–2500CrossRefGoogle Scholar
  8. Chang JJ, Kwon JH, Yoo SI, Park C, Sohn BH (2009b) Bimodal arrays of two types of nanoparticles by mixtures of diblock copolymer micelles. J Mater Chem 19:1621–1625CrossRefGoogle Scholar
  9. Fahmi AW, Stamm M (2005) Spatially correlated metallic nanostructures on self-assembled diblock copolymer templates. Langmuir 21:1062–1066CrossRefGoogle Scholar
  10. Fan HJ, Fuhrmann B, Scholz R, Syrowatka F, Dadgar A, Krost A, Zacharias M (2006a) Well-ordered ZnO nanowire arrays on GaN substrate fabricated via nanosphere lithography. J Cryst Growth 287:34–38CrossRefGoogle Scholar
  11. Fan HJ, Werner P, Zacharias M (2006b) Semiconductor nanowires: from self-organization to patterned growth. Small 2:700–717CrossRefGoogle Scholar
  12. Fuhrmann B, Leipner HS, Höche HR, Schubert L, Werner P, Gösele U (2005) Ordered arrays of silicon nanowires produced by nanosphere lithography and molecular beam epitaxy. Nano Lett 5:2524–2527CrossRefGoogle Scholar
  13. Guo LJ (2007) Nanoimprint lithography: methods and material requirements. Adv Mater 19:495–513CrossRefGoogle Scholar
  14. Haque SA, Koops S, Tokmoldin N, Durrant JR, Huang JS, Bradley DDC, Palomares E (2007) A multilayered polymer light-emitting diode using a nanocrystalline metal-oxide film as a charge-injection electrode. Adv Mater 19:683–687CrossRefGoogle Scholar
  15. Hirai T et al (2009) One-step direct-patterning template utilizing self-assembly of POSS-containing block copolymers. Adv Mater 21:4334–4338CrossRefGoogle Scholar
  16. Horiuchi S, Fujita T (2003) Three-dimensional nanoscale alignment of metal nanoparticles using block copolymer films as nanoreactors. Langmuir 19:2963–2973CrossRefGoogle Scholar
  17. Hornyak G, Kröll M, Pugin R, Sawitowski T, Schmid G, Bovin JO, Karsson G, Hofmeister H, Hopfe S (1997) Gold clusters and colloids in alumina nanotubes. Chem Eur J 3(12):1951–1956CrossRefGoogle Scholar
  18. Hutter E, Fendler JH (2004) Exploitation of localized surface plasmon resonance. Adv Mater 16:1685–1706CrossRefGoogle Scholar
  19. Hwang W et al (2008) Chem Mater 20:6041–6047CrossRefGoogle Scholar
  20. Jung YS, Ross CA (2009) Well-ordered thin-film nanopore arrays formed using a block-copolymer template. Small 5:1654–1659CrossRefGoogle Scholar
  21. Kannaiyan D, Cha MA, Jang YH, Sohn BH, Huh J, Park C, Kim DH (2009) Efficient photocatalytic hybrid Ag/TiO2 nanodot arrays integrated into nanopatterned block copolymer thin films. New J Chem 33:2431–2436CrossRefGoogle Scholar
  22. Kannaiyan D, Kim E, Won N, Kim KW, Jang YH, Cha M, Ryu DY, Kim S, Kim DH (2010) On the synergistic coupling properties of composite CdS/TiO2 nanoparticle arrays confined in nanopatterned hybrid thin films. J Mater Chem 20:677–682CrossRefGoogle Scholar
  23. Kim SO, Solak HH, Stoykovich MP, Ferrier NJ, Pablo JJ, Nealey PF (2003) Epitaxial self-assembly of block copolymers on lithographically defined nanopatterned substrates. Nature 424:411–414CrossRefGoogle Scholar
  24. Koh HD, Kang NG, Lee JS (2007) Fabrication of an open Au/nanoporous film by water-in-oil emulsion-induced block copolymer micelles. Langmuir 23:12817–12820CrossRefGoogle Scholar
  25. Lee JY, Horiuchi S (2007) Electroless nickel plating on patterned catalytic surfaces by electron beam lithography. Thin Solid Films 515:7798–7804CrossRefGoogle Scholar
  26. Li MQ, Ober CK (2006) Block copolymer patterns and templates. Mater Today 9:30–39CrossRefGoogle Scholar
  27. Li JZ, Kamata K, Iyoda T (2008) Tailored Ag nanoparticle array fabricated by block copolymer photolithography. Thin Solid Films 516:2577–2581CrossRefGoogle Scholar
  28. Li FH, Wang ZH, Shan CS, Song JF, Han DX, Niu L (2009a) Preparation of gold nanoparticles/functionalized multiwalled carbon nanotube nanocomposites and its glucose biosensing application. Biosens Bioelectron 24:1765–1770CrossRefGoogle Scholar
  29. Li GX, Nan HY, Zheng XW (2009b) The investigation of photo-induced chemiluminescence on Co2+-doped TiO2 nanoparticles and its analytical application. Analyst 134:1396–1404CrossRefGoogle Scholar
  30. Li WC, Park SE, Kim JS, Lee SW (2009c) Self-assembled two-dimensional array of gold nanoparticles with different size for the sensing application. Jpn J Appl Phys 48:06FF14CrossRefGoogle Scholar
  31. Lin ZQ, Kim DH, Wu XD (2002) A rapid route to arrays of nanostructures in thin films. Adv Mater 14:1373–1376CrossRefGoogle Scholar
  32. Lin Y et al (2005) Self-directed self-assembly of nanoparticle/copolymer mixtures. Nature 434:55–59CrossRefGoogle Scholar
  33. Lopes WA, Jaeger HM (2001) Hierarchical self-assembly of metal nanostructures on diblock copolymer scaffolds. Nature 414:735–738CrossRefGoogle Scholar
  34. Ma XY (2008) Memory properties of a Ge nanoring MOS device fabricated by pulsed laser deposition. Nanotechnology 19:275706CrossRefGoogle Scholar
  35. Mendoza C, Pietsch T, Gindy N, Fahmi A (2008) Fabrication of 3D-periodic ordered metallic nanoparticles in a block copolymer bulk matrix via oscillating shear flow. Adv Mater 20:1179–1184CrossRefGoogle Scholar
  36. Morin SA, La YH, Liu CC, Streifer JA, Hamers RJ, Nealey PF, Jin S (2009) Assembly of nanocrystal arrays by block-copolymer-directed nucleation. Angew Chem Int Ed 48:2135–2139CrossRefGoogle Scholar
  37. Nagesha DK, Plouffe BD, Phan M, Lewis LH, Sridhar S, Murthy SK (2009) Functionalization-induced improvement in magnetic properties of Fe3O4 nanoparticles for biomedical applications. J Appl Phys 105:07B317CrossRefGoogle Scholar
  38. Nandan B, Gowd EB, Bigall NC, Eychmüller A, Formanek P, Simon P, Stamm M (2009) Arrays of inorganic nanodots and nanowires using nanotemplates based on switchable block copolymer supramolecular assemblies. Adv Funct Mater 19:2805–2811CrossRefGoogle Scholar
  39. Pál E, Oszkó A, Mela P, Möller M, Dékány I (2008) Preparation of hexagonally aligned inorganic nanoparticles from diblock copolymer micellar systems. Colloids Surf A 331:213–219CrossRefGoogle Scholar
  40. Park SM, Craig GSW, La YH, Solak HH, Nealey PF (2007) Square arrays of vertical cylinders of PS-b-PMMA on chemically nanopatterned surfaces. Macromolecules 40:5084–5094CrossRefGoogle Scholar
  41. Park S, Kim B, Wang JY, Russell TP (2008) Fabrication of highly ordered silicon oxide dots and stripes from block copolymer thin films. Adv Mater 20:681–685CrossRefGoogle Scholar
  42. Park HJ, Kang MG, Guo LJ (2009) Large area high density sub-20 nm SiO2 nanostructures fabricated by block copolymer template for nanoimprint lithography. ACS Nano 3:2601–2608CrossRefGoogle Scholar
  43. Peng J, Mao C, Kim J, Kim DH (2009) From nanodot to nanowire: hybrid Au/titania nanoarrays by block copolymer templates. Macromol Rapid Commun 30:1857–1861CrossRefGoogle Scholar
  44. Qiao YH, Wang D, Buriak JM (2007) Block copolymer templated etching on silicon. Nano Lett 7:464–469CrossRefGoogle Scholar
  45. Schmid G (1994) Clusters and colloids. From theory to applications. Vch Verlagsgesellschaft, New YorkCrossRefGoogle Scholar
  46. Schmid G, Chi LF (1998) Metal clusters and colloids. Adv Mater 10:515–526CrossRefGoogle Scholar
  47. Seow ZLS, Wong ASW, Thavasi V, Jose R, Ramakrishna S, Ho GW (2009) Controlled synthesis and application of ZnO nanoparticles, nanorods and nanospheres in dye-sensitized solar cells. Nanotechnology 20:045604CrossRefGoogle Scholar
  48. Sohn BH, Seo BH (2001) Fabrication of the multilayered nanostructure of alternating polymers and gold nanoparticles with thin films of self-assembling diblock copolymers. Chem Mater 13:1752–1757CrossRefGoogle Scholar
  49. Son JG, Bae WK, Kang HM, Nealey PF, Char K (2009) Placement control of nanomaterial arrays on the surface-reconstructed block coplymer thin films. ACS Nano 3:3927–3934CrossRefGoogle Scholar
  50. Spatz JP, Roescher A, Möller M (1996) Gold nanoparticles in micellar poly(styrene)-b-poly(ethylene oxide) films—size and interparticle distance control in monoparticulate films. Adv Mater 8:337–340CrossRefGoogle Scholar
  51. Sutherland WS, Winefordner JD (1992) Colloid filtration: a novel substrate preparation method for surface-enhanced Raman spectroscopy. J Colloid Interface Sci 148:129–141CrossRefGoogle Scholar
  52. Tang CB, Lennon EM, Fredrickson GH, Kramer EJ, Hawker CJ (2008) Evolution of block copolymer lithography to highly ordered square arrays. Science 322:429–432CrossRefGoogle Scholar
  53. Tang CB, Hur SM, Stahl BC, Sivanandan K, Dimitriou M, Pressly E, Fredrickson GH, Kramer EJ, Hawker CJ (2010) Thin film morphology of block copolymer blends with tunable supramolecular interactions for lithographic applications. Macromolecules 43:2880–2889CrossRefGoogle Scholar
  54. Tseng CH, Tambe MJ, Lim SK, Smith MJ, Gradeǎak S (2010) Position controlled nanowire growth through Au nanoparticles synthesized by galvanic reaction. Nanotechnology 21:165605CrossRefGoogle Scholar
  55. Wang ZL (2009) ZnO nanowire and nanobelt platform for nanotechnology. Mater Sci Eng R 64:33–71CrossRefGoogle Scholar
  56. Wang XD, Summers CJ, Wang ZL (2004) Large-scale hexagonal-patterned growth of aligned ZnO nanorods for nano-optoelectronics and nanosensor arrays. Nano Lett 4:423–426CrossRefGoogle Scholar
  57. Wang Y, Deng JJ, Di JW, Tu YF (2009a) Electrodeposition of large size gold nanoparticles on indium tin oxide glass and application as refractive index sensor. Electrochem Commun 11:1034–1037CrossRefGoogle Scholar
  58. Wang ZJ, Qu SC, Zeng XB, Liu JP, Zhang CS, Tan FR, Jin L, Wang ZG (2009b) The application of SnS nanoparticles to bulk heterojunction solar sells. J Alloys Compd 482:203–207CrossRefGoogle Scholar
  59. Yun SH, Yoo SI, Jung JC, Zin WC, Sohn BH (2006) Highly ordered arrays of nanoparticles in large areas from diblock copolymer micelles in hexagonal self-assembly. Chem Mater 18:5646–5648CrossRefGoogle Scholar
  60. Zhou Z, Deng Y (2009) Kinetics study of ZnO nanorod growth in solution. J Phys Chem C 113(46):19853CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.School of Chemistry and Chemical EngineeringSouth China University of TechnologyGuangzhouPeople’s Republic of China
  2. 2.School of Chemical and Biomolecular EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations