Skip to main content
Log in

Fabrication and characterization of CdS-sensitized TiO2 nanotube photoelectrode

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

CdS quantum dot (Qd)-sensitized TiO2 nanotube array photoelectrode is synthesised via a two-step method on tin-doped In2O3-coated (ITO) glass substrate. TiO2 nanotube arrays are prepared in the ethylene glycol electrolyte solution by anodizing titanium films which are deposited on ITO glass substrate by radio frequency sputtering. Then, the CdS Qds are deposited on the nanotubes by successive ionic layer adsorption and reaction technique. The resulting nanotube arrays are characterized by scanning electron microscopy, X-ray diffraction (XRD) and UV–visible absorption spectroscopy. The length of the obtained nanotubes reaches 1.60 μm and their inner diameter and wall thickness are around 90 and 20 nm, respectively. The XRD results show that the as-prepared TiO2 nanotubes array is amorphous, which are converted to anatase TiO2 after annealed at 450 °C for 2 h. The CdS Qds deposited on the TiO2 nanotubes shift the absorption edge of TiO2 from 388 to 494 nm. The results show that the CdS-sensitized TiO2 nanotubes array film can be used as the photoelectrode for solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Albu SP, Ghicov A, Macak JM, Schmuki P (2007) 250 μm long anodic TiO2 nanotubes with hexagonal self-ordering. Phys Status Solidi (RRL) 1(2):65–67. doi:10.1002/pssr.200600069

    Article  Google Scholar 

  • Chang CH, Lee YL (2007) Chemical bath deposition of CdS quantum dots onto mesoscopic TiO2 films for application in quantum-dot-sensitized solar cells. Appl Phys Lett 91:053503. doi:10.1063/1.2768311

    Article  Google Scholar 

  • Chen SG, Paulose M, Ruan CM, Mor GK, Varghese OK, Kouzoudis D, Grimes CA (2006) Electrochemically synthesized CdS nanoparticle-modified TiO2 nanotube-array photoelectrodes: preparation, characterization, and application to photoelectrochemical cells. J Photochem Photobiol A Chem 177:177–184. doi:10.1016/j.jphotochem.2005.05.023

    Article  CAS  Google Scholar 

  • Grätzel M (2004) Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. J Photochem Photobiol A Chem 164:3–14. doi:10.1016/j.jphotochem.2004.08.014

    Article  Google Scholar 

  • Kamat PV (2007) Meeting the clean energy demand: nanostructure architectures for solar energy conversion. J Phys Chem C 111:2834–2860. doi:10.1021/jp066952u

    Article  CAS  Google Scholar 

  • Kijitori Y, Ikegami M, Miyasaka Y (2007) Highly efficient plastic dye-sensitized photoelectrodes prepared by low-temperature binder-free coating of mesoscopic titania pastes. Chem Lett 36:190–191. doi:10.1246/cl.2007.190

    Article  CAS  Google Scholar 

  • Lee YL, Lo YS (2009) Highly efficient quantum-dot-sensitized solar cell based on co-sensitization of CdS/CdSe. Adv Funct Mater 19:604–609. doi:10.1002/adfm.200800940

    Article  Google Scholar 

  • Luo BM, Yang HB, Liu SK, Fu WY, Sun P, Yuan MX, Zhang YY, Liu ZL (2008) Fabrication and characterization of self-organized mixed oxide nanotube arrays by electrochemical anodization of Ti–6Al–4V alloy. Mater Lett 62:4512–4515. doi:10.1016/j.matlet.2008.08.015

    Article  CAS  Google Scholar 

  • Mor GK, Varghese OK, Paulose M, Grimes CA (2005) Transparent highly ordered TiO2 nanotube array via anodization of titanium thin tilm. Adv Funct Mater 15:1291–1296. doi:10.1002/adfm.200200096

    Article  CAS  Google Scholar 

  • Mor GK, Varghese OK, Paulose M, Shankar K, Grimes CA (2006) A review on highly ordered, vertically oriented TiO2 nanotube arrays: fabrication, material properties, and solar energy applications. Sol Energy Mater Sol Cells 90:2011–2075. doi:10.1016/j.solmat.2006.04.007

    Article  CAS  Google Scholar 

  • Ong KG, Varghese OK, Mor GK, Shankar K, Grimes CA (2007) Application of finite-difference time domain to dye-sensitized solar cells: the effect of nanotube-array negative electrode dimensions on light absorption. Sol Energy Mater Sol Cells 91:250–257. doi:10.1016/j.solmat.2006.09.002

    Article  CAS  Google Scholar 

  • Tang YW, Hu XY, Chen MJ, Luo LJ, Li BH, Zhang LZ (2009a) CdSe nanocrystal sensitized ZnO core-shell nanorod array films: preparation and photovoltaic properties. Electrochim Acta 54:2742–2747. doi:10.1016/j.electacta.2008.11.047

    Article  CAS  Google Scholar 

  • Tang YX, Tao J, Zhang YY, Wu T, Tao HJ, Zhu YR (2009b) Preparation of TiO2 nanotube on glass by anodization of Ti films at room temperature. Trans Nonferous Met Soc China 19:192–198. doi:10.1016/S1003-6326(08)60251-4

    Article  CAS  Google Scholar 

  • Yuan S, Yu L, LYi Sh, Wu J, Fang JH, Zhao Y (2009) Highly ordered TiO2 nanotube array as recyclable catalyst for the sono-photo-catalytic degradation of methylene blue. Catal Commun 10:1188–1191. doi:10.1016/j.catcom.2009.01.016

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research is financial supported by the National Basic Research Program of China (2009CB939704) and the Important Project of Ministry of Education of China (309021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiujian Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, H., Zhao, X., Sui, X. et al. Fabrication and characterization of CdS-sensitized TiO2 nanotube photoelectrode. J Nanopart Res 13, 555–562 (2011). https://doi.org/10.1007/s11051-010-0049-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-010-0049-5

Keywords

Navigation