Journal of Nanoparticle Research

, Volume 13, Issue 1, pp 385–391 | Cite as

A facile route to synthesize titanium oxide nanowires via water-assisted chemical vapor deposition

  • Hao Liu
  • Yong Zhang
  • Ruying Li
  • Mei Cai
  • Xueliang Sun
Research Paper


Single crystalline rutile titanium oxide nanowires have been synthesized in bulk yield based on commercial metal titanium by a facile water-assisted chemical vapor deposition method. The morphology, crystallinity, and phase structure of the nanowires have been characterized by scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), and X-ray diffraction (XRD). This growth strategy is applicable for commercial metal titanium substrate with different spatial dimensions, such as powder, network mesh, and flat foil. The as-synthesized nanowires are found to be mainly composed of single crystalline rutile TiO2 nanowires in spiral shape with a small amount of hexagonal Ti2O nanowires with zigzag form. A growth mechanism has been proposed to explain the novel spiral and zigzag types of titanium oxide nanowires under moderate temperature (850 °C). This method promises an alternative way for industrialization of titanium oxide nanowires which may serve as a good candidate for various industrial applications such as optoelectronic, electronic, and electrochemical nanodevices.


Chemical vapor deposition Titanium oxide Nanowires Water vapor Optoelectronic applications 


  1. Appell D (2002) Nanotechnology: wired for success. Nature 419:553–555CrossRefGoogle Scholar
  2. Badescu V, Mormirlan M (1996) Statistics of TiO2 crystal growth in air on a metallic surface heated at temperatures in the range of 900–1000°C. J Cryst Growth 169:309–316CrossRefGoogle Scholar
  3. Barsoum MW, Hoffman EN, Doherty RD, Gupta S, Zavaliangos A (2004) Driving force and mechanism for spontaneous metal whisker formation. Phys Rev Lett 93:206104(1)–206104(4)Google Scholar
  4. Bonhote P, Gogniat E, Graztel M, Ashrit PV (1999) Novel electrochromic devices based on complementary nanocrystalline TiO2 and WO3 thin film. Thin Solid Films 350:269–275CrossRefGoogle Scholar
  5. Chambers SA, Thevuthasan Farrow SRFC, Marks RF, Thiele JU, Folks L, Samant MG, Kellock AJ, Ruzychi N, Ederer DL, Diebold U (2001) Epitaxial growth and properties of ferromagnetic co-doped TiO2 anatase. Appl Phys Lett 79:3467–3469CrossRefGoogle Scholar
  6. Damiriu D, Bally AR, Ballif C, Homes P, Schmid PE, Sanjines R, Levy F, Parvulescu VI (2002) Photocatalytic degradation of phenol by TiO2 thin films prepared by sputtering. Appl Catal B 25:83–92Google Scholar
  7. Diebold U (2003) The surface science of titanium dioxide. Surf Sci Rep 48:53–229CrossRefGoogle Scholar
  8. Fang XS, Ye CH, Zhang LD, Xie T (2005) Luminescence and amplified stimulated emission in CdSe-ZnS-nanocrystal-doped TiO2 and ZrO2 waveguides. Adv Mater 17:1661–1665CrossRefGoogle Scholar
  9. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38CrossRefGoogle Scholar
  10. Haul R, Dumbgen G (1965) Sauerstoff-selbstdiffusion in rutikristallen. J Phys Chem Solids 26:1–10CrossRefGoogle Scholar
  11. Huntington HB, Sullivan GA (1965) Interstitial diffusion mechanism in rutile. Phys Rev Lett 14:177–178CrossRefGoogle Scholar
  12. Johansson J, Karlsson L, Patrik C, Svensson T, Martensson T, Wacaser BA, Deppert K, Samuelson L, Seifert W (2006) Structural properties of <111> B-oriented III–V nanowires. Nat Mater 5:574–580CrossRefGoogle Scholar
  13. Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K (1999) Titania nanotubes prepared by chemical processing. Adv Mater 11:1307–1311CrossRefGoogle Scholar
  14. Kim JH, Ishihara A, Mitsushima S, Kamiya N, Ota KI (2007) Catalytic activity of titanium oxide for oxygen reduction reaction as a non-platinum catalyst for PEFC. Electro Acta 52:2492–2497CrossRefGoogle Scholar
  15. Lan Y, Gao XP, Zhu HY, Zheng ZF, Yan TY, Wu F, Ringer SP, Song DY (2005) Titanate nanotubes and nanorods prepared from rutile powder. Adv Funct Mater 15:1310–1318CrossRefGoogle Scholar
  16. Lee JC, Park KS, Kim TG, Choi HJ, Sung YM (2006) Controlled growth of high-quality TiO2 nanowires on sapphire. Nanotechnology 17:4317–4321CrossRefGoogle Scholar
  17. Lei Y, Zhang L, Meng G, Li G, Zhang X, Liang C, Chen W, Wang S (2001) Preparation and photoluminescence of highly ordered TiO2 nanowire arrays. Appl Phys Lett 78:1125–1127CrossRefGoogle Scholar
  18. Liu S, Huang K (2005) Straight forward fabrication of highly ordered TiO2 nanowire arrays in AAM aluminum substrate. Sol Energy Mater Sol C 85:125–131Google Scholar
  19. Liu SM, Gan LM, Lu LH, Zhang WD, Zeng HC (2002) Synthesis of single-crystalline TiO2 nanotubes. Chem Mater 14:1391–1397CrossRefGoogle Scholar
  20. Liu YZ, Zu XT, Lian J, Wang L, Huang XQ, Wang ZG, Wang LM, Ewing RC (2004) TEM observation of oxide scale formed on a Ti–Al–Zr alloy oxidized at 360°C in alkaline steam. Philos Mag Lett 84:705–712CrossRefGoogle Scholar
  21. Masumoto Y, Shono T, Hasegawa T, Fukumura T, Kawasaki M, Ahmet P, Chikyow T, Koshihara S, Koinuma H (2001) Room-temperature ferromagnetism in transparent transition metal-doped titanium dioxide. Science 291:854–856CrossRefGoogle Scholar
  22. Miao Z, Xu D, Ouyang J, Guo G, Zhao X, Tang Y (2002) Electrochemically induced sol–gel preparation of single-crystalline TiO2 nanowires. Nano Lett 2:717–720CrossRefGoogle Scholar
  23. O’Neill SA, Parkin IP, Clark RJK, Mills A, Elliott N (2003) Atmospheric pressure chemical vapour deposition of titanium dioxide coatings on glass. J Mater Chem 13:56–60CrossRefGoogle Scholar
  24. O’Regan B, Grätzel MA (1991) Low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 film. Nature 353:737–740CrossRefGoogle Scholar
  25. Peng X, Chen A (2004) Aligned TiO2 nanorod arrays synthesized by oxidizing titanium with acetone. J Mater Chem 14:2542–2548CrossRefGoogle Scholar
  26. Peng X, Chen A (2005) Dense and high-hydrophobic rutile TiO2 nanorod arrays. Appl Phys A 80:473–476CrossRefGoogle Scholar
  27. Peng X, Chen A (2006) Large-scale synthesis and characterization of TiO2-based nanostructures on Ti substrates. Adv Funct Mater 16:1355–1362CrossRefGoogle Scholar
  28. Pradhan SK, Reucroft PJ, Yang F, Dozier A (2003) Growth of TiO2 nanorods by metalorganic chemical vapor deposition. J Cryst Growth 256:83–88CrossRefGoogle Scholar
  29. Richel A, Johnson NP, McComb DW (2002) Observation of Bragg reflection in photonic crystals synthesized from air spheres in a titania matrix. Appl Phys Lett 76:1816CrossRefGoogle Scholar
  30. Rothschild A, Levakov A, Shapira Y, Ashkenasy N, Komem Y (2005) Surface photovoltage spectroscopy study of reduced and oxidized TiO2 films. Surf Sci 532:456460Google Scholar
  31. Shannon RD (1964) Phase transformation studies in TiO2 supporting different defect mechanisms in vacuum-reduced and hydrogen-reduced rutile. J Appl Phys 35:3414–3416CrossRefGoogle Scholar
  32. Stergiopoulos T, Arabatzis LM, Katsaros G, Falaras P (2002) Binary polyethylene oxide/titania solid-sate redox electrolyte for highly efficient nanocrystalline TiO2 photoelectrochemical cells. Nano Lett 2:1259–1261CrossRefGoogle Scholar
  33. Sung YM, Lee JK, Chae WS (2006) Controlled crystallization of nanoporous and core/shell structure titania photocatalyst particles. Cryst Growth Des 6:805–808CrossRefGoogle Scholar
  34. Varghese OK, Gong D, Paulose M, Ong KG, Dickey C, Grimes CA (2003) Extreme changes in the electrical resistance of titania nanotubes with hydrogen exposure. Adv Mater 15:624–627CrossRefGoogle Scholar
  35. Wang Q, Wen Z, Li J (2006) Solvent-controlled synthesis and electron chemical lithium storage of one dimensional TiO2 nanostructures. Inorg Chem 45:6944–6949CrossRefGoogle Scholar
  36. Wijnhoven JEGJ, Vos WL (1998) Preparation of photonic crystals made of air spheres in titania. Science 281:802–804CrossRefGoogle Scholar
  37. Wu JJ, Yu CC (2004) Aligned TiO2 nanorods and nanowalls. J Phys Chem B 108:3377–3379CrossRefGoogle Scholar
  38. Wu JM, Shih HC, Wu WT, Tseng YK, Chen IC (2005) Thermal evaporation growth and the luminescence property of TiO2 nanowires. J Cryst Growth 281:384–390CrossRefGoogle Scholar
  39. Xiang B, Zhang Y, Wang Z, Luo XH, Zhu YW, Zhang HZ, Yu DP (2005) Field-emission properties of TiO2 nanowire arrays. J Phys D 38:1152–1155CrossRefGoogle Scholar
  40. Xiong C, Balkus KJ Jr (2005) Fabrication of TiO2 nanofibers from a mesoporous slica film. Chem Mater 17:5136–5140CrossRefGoogle Scholar
  41. Yao BD, Chan YF, Zhang XY, Zhang WF, Yang ZY, Wang N (2003) Formation mechanism of TiO2 nanotubes. Appl Phys Lett 82:281–283CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Hao Liu
    • 1
  • Yong Zhang
    • 1
  • Ruying Li
    • 1
  • Mei Cai
    • 2
  • Xueliang Sun
    • 1
  1. 1.Department of Mechanical and Materials EngineeringThe University of Western OntarioLondonCanada
  2. 2.General Motors Research and Development CenterWarrenUSA

Personalised recommendations