Journal of Nanoparticle Research

, Volume 13, Issue 1, pp 375–384 | Cite as

Synthesis of nickel nanoparticles in silica by alcogel electrolysis

  • Muhammad Z. Rana
  • Mazhar Mehmood
  • Jamil Ahmad
  • Muhammad Aslam
  • Syed K. Hasanain
  • Sohail Hameed
Research Paper

Abstract

We report a novel technique for the formation of metal nanoparticles, based on electrolysis of the alcogels containing metal chlorides. The alcogel was formed from TEOS, water, ethanol, and nickel chloride, and subjected to galvanostatic electrolysis. This resulted in successful formation of Ni nanoparticles inside the silica gel. Average particle size of FCC Ni lies between 18 and 20 nm. The formation of tetragonal nickel (a sub-oxide of nickel) as well as NiO were also detected by XRD and SAED. The resistivity measurements showed that the nickel nanoparticles were separated from each other by Ni(O) present between them. Magnetic studies based on ZFC and FC measurements below room temperature (up to 5 K) and above room temperature (up to 700 K) were conducted using SQUID and Magnetic TGA, respectively, which showed strong magnetic irreversibility as attributable to exchange interaction between metallic and oxide phases and mutual interactions among metallic particles in the network structure. The blocking temperature (~600 K) of the samples was above room temperature. M–H studies based on VSM showed an increase in magnetic coercivity with the formation of NiO. A magnetic transition associated with tetragonal nickel was seen at 10 K.

Keywords

Sol–gel Alcogel electrolysis Nanoparticles Tetragonal nickel Exchange interaction Synthesis at room temperature Magnetism 

References

  1. Boiadjieva T, Cappelletti G, Ardizzone S, Rondinini S, Vertova A (2003) Nanocrystalline titanium oxide by sol-gel method: the role of the solvent removal step. Phys Chem Chem Phys 5:1689–1694CrossRefGoogle Scholar
  2. Brinker CJ, Scherer GW (1989) Sol-gel science: the physics and chemistry of sol-gel processing. Academic Press, California, USAGoogle Scholar
  3. Cai WP, Zhang LD (1997) Synthesis and structural and optical properties of mesoporous silica containing silver nanoparticles. J Phys: Condens Matter 9:7257–7267CrossRefGoogle Scholar
  4. Chipara M, Hui D, Sankar J, Leslie-Pelecky D, Bender A, Yue L, Skomski R, Sellmyer DJ (2004) On styrene-butadiene-styrene-barium ferrite nanocomposites. Composites B 35:235–243CrossRefGoogle Scholar
  5. Cintora-Gonzalez O, Estournes C, Richard-Plouet M, Guille JL (2001) Nickel nano-particles in silica gel monoliths: control of the size and magnetic properties. Mater Sci Eng C 15:179–182CrossRefGoogle Scholar
  6. Dorman JL, Fiorani D (eds) (1992) Magnetic properties of fine particles. North Holland, AmsterdamGoogle Scholar
  7. Ennas G, Mei A, Musinu A, Piccaluga G, Pinna G, Solinas S (1998) Sol-gel preparation and characterization of Ni-SiO2 nanocomposites. J Noncryst Solids 232:587–593CrossRefGoogle Scholar
  8. Ennas G, Falqui A, Marras S, Sangregorio C, Marongiu G (2004) Influence of metal content on size, dispersion, and magnetic properties of iron-cobalt alloy nanoparticles embedded in silica matrix. Chem Mater 16:5659–5663CrossRefGoogle Scholar
  9. Estournes C, Lutz T, Happich J, Quaranta T, Wissler P, Guille JL (1997) Nickel nanoparticles in silica gel: preparation and magnetic properties. J Magn Magn Mater 173:83–92CrossRefGoogle Scholar
  10. Fidalgo A, Ilharco LM (2005) The influence of the wet gels processing on the structure and properties of silica xerogels. Microporous Mesoporous Mater 84:229–235CrossRefGoogle Scholar
  11. Jamal EMA, Joy PA, Kurian P, Anantharamana MR (2009) Synthesis of nickel-rubber nanocomposites and evaluation of their dielectric properties. Mater Sci Eng B 156:24–31CrossRefGoogle Scholar
  12. Kan CX, Cai WP, Li ZS, Fu GH, Zhang LD (2003) Reduction effect of pore wall and formation of Au nanowires inside monolithic mesoporous silica. Chem Phys Lett 382:318–324CrossRefGoogle Scholar
  13. Liu W, Zhong W, Jiang HY, Tang NJ, Wu XL, Du AY (2005) Synthesis and magnetic properties of FeNi3/Al2O3 core-shell nanocomposites. Eur Phys J B 46:471–474CrossRefGoogle Scholar
  14. Liu W, Zhong W, Jiang HY, Tang NJ, Wu XL, Du YW (2006) Highly stable alumina-coated iron nanocomposites synthesized by wet chemistry method. Surf Coat Technol 200:5170–5174CrossRefGoogle Scholar
  15. Ma X, Zhang Y, Ge S, Zhang Z, Yan D, Xiao DT (2009) Thick film nanoparticulate composites and method of manufacture thereof. US Patent 7,485,366 B2Google Scholar
  16. Moriarty P (2001) Nanostructured materials. Rep Prog Phys 64:297–381CrossRefGoogle Scholar
  17. Nayak BB, Vitta S, Nigum AK, Bahadur D (2005) Transport and magnetic properties of encapsulated Ni–Ni–O/Zr–O nanostructures. IEEE Trans Magn 41:3298–3300CrossRefGoogle Scholar
  18. Ohldag H, Scholl A, Nolting F, Anders S, Hillebrecht FU, Stöhr J (2001) Spin reorientation at the antiferromagnetic NiO(001) surface in response to an adjacent ferromagnet. Phys Rev Lett 86:2878–2881CrossRefGoogle Scholar
  19. Peng K, Zhou LP, Hu A, Tang YH, Li D (2008) Synthesis and magnetic properties of Ni–SiO2 nanocomposites. Mater Chem Phys 111:34–37CrossRefGoogle Scholar
  20. Polshettiwar V, Molnár Á (2007) Silica-supported Pd catalysts for Heck coupling reactions. Tetrahedron 63:6949–6976CrossRefGoogle Scholar
  21. Roy A, Srinivas V, Ram S, De Toro JA, Mizutani U (2005) Structure and magnetic properties of oxygen-stabilized tetragonal Ni nanoparticles prepared by borohydride reduction method. Phys Rev B 71:184443CrossRefGoogle Scholar
  22. Roy A, Srinivas V, De Toro JA, Goff JP (2006) Low-temperature magnetization dynamics of oxygen-stabilized tetragonal Ni nanoparticles. Phys Rev B 74:104402CrossRefGoogle Scholar
  23. Skumryev V, Stoyanov S, Zhang Y, Hadjipanayis G, Givord D, Nogues J (2003) Beating the superparamagnetic limit with exchange bias. Nature 423:850–853CrossRefGoogle Scholar
  24. Sun XC, Dong XL (2002) Magnetic properties and microstructure of carbon encapsulated Ni nanoparticles and pure Ni nanoparticles coated with NiO layer. Mater Res Bull 37:991–1004CrossRefGoogle Scholar
  25. Tang NJ, Jiang HY, Zhong W, Wu XL, Zou WQ, Du YW (2006) Synthesis and magnetic properties of Fe/SiO2 nanocomposites prepared by a sol-gel method combined with hydrogen reduction. J Alloy Compd 419:145–148CrossRefGoogle Scholar
  26. Tom RT, Nair AS, Singh N, Aslam M, Nagendra CL, Philip R, Vijayamohanan K, Pradeep T (2003) Freely dispersible Au@TiO2, Au@ZrO2, Ag@TiO2, and Ag@ZrO2 core-shell nanoparticles: one-step synthesis, characterization, spectroscopy, and optical limiting properties. Langmuir 19:3439–3445CrossRefGoogle Scholar
  27. van Lierop J, Lewis LH, Williams KE, Gambino RJ (2002) Magnetic exchange effects in a nanocomposite Ni/NiO film. J Appl Phys 91:7233–7235CrossRefGoogle Scholar
  28. Wu YC, Zhang L, Li GH, Liang CH, Huang XM, Zhang Y, Song GM, Jia JH, Chen ZX (2001) Synthesis and characterization of nanocomposites with palladium embedded in mesoporous silica. Mater Res Bull 36:253–263CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Muhammad Z. Rana
    • 1
  • Mazhar Mehmood
    • 1
  • Jamil Ahmad
    • 1
  • Muhammad Aslam
    • 1
  • Syed K. Hasanain
    • 2
  • Sohail Hameed
    • 3
  1. 1.Department of Chemical and Materials Engineering (DCME), National Centre for Nanotechnology (NCN)Pakistan Institute of Engineering and Applied Sciences (PIEAS)IslamabadPakistan
  2. 2.Department of PhysicsQuaid-i-Azam UniversityIslamabadPakistan
  3. 3.National Institute for Biotechnology and Genetic EngineeringFaisalabadPakistan

Personalised recommendations