Journal of Nanoparticle Research

, Volume 13, Issue 1, pp 365–374 | Cite as

Superparamagnetic nickel nanoparticles obtained by an organometallic approach

  • E. Ramírez-Meneses
  • I. Betancourt
  • F. Morales
  • V. Montiel-Palma
  • C. C. Villanueva-Alvarado
  • M. E. Hernández-Rojas
Research Paper


Nickel nanoparticles were prepared by decomposition of the organometallic precursor Ni(COD)2 (COD=cycloocta-1,5-diene) dissolved in organic media in the presence of anthranilic acid as stabilizer. Transmission electron microscopy revealed nickel nanoparticles with a mean size of 4.2 ± 1.1 nm and selected area electron diffraction showed the formation of fcc nickel. FTIR spectroscopy confirmed the presence of modified anthranilic acid on the surface of the Ni nanoparticles suggesting that it is able to interact with the metal particles. The magnetic response of the nanoparticles was established as being of superparmagnetic character, for which a detailed quantitative analysis resulted in a mean magnetic moment of 2652 μB per particle together with a blocking temperature of 32 K.


Nanostructures Chemical synthesis Superparamagnetism Magnetic properties Synthesis 


  1. Bahlawane N, Premkumar PA, Tian Z, Hong X, Qi F, Kohse-Höinghaus K (2010) Nickel and nickel-based nanoalloy thin films from alcohol-assisted chemical vapor deposition. Chem Mater 22:92–100CrossRefGoogle Scholar
  2. Bai L, Yuan F, Tang Q (2008) Synthesis of nickel nanoparticles with uniform size via a modified hydrazine reduction route. Mater Lett 62:2267–2270CrossRefGoogle Scholar
  3. Borowski AF, Rajca I (1984) Structure and Properties of Anthranilato- and N-henylanthranilatorhodium (I) Complexes with cis-cycloocta-l, 5-diene. Trans Met Chem 9:109–112CrossRefGoogle Scholar
  4. Bradley JS, Hill EW, Behal S, Klein C, Chaudret B, Duteil A (1992) Preparation and characterization of organosols of monodispersed nanoscale palladium. Particle size effects in the binding geometry of adsorbed carbon monoxide. Chem Mater 4:1234–1239CrossRefGoogle Scholar
  5. Bradley JS, Tesche B, Busser W, Maase M, Reetz MTJ (2000) Surface spectroscopic study of the stabilization mechanism for shape-selectively synthesized nanostructured transition metal colloids. Am Chem Soc 122:4631–4636CrossRefGoogle Scholar
  6. Branch CS, Lewinski J, Justyniak I, Bott SG, Lipkowski J, Barron AR (2001) Aluminum and gallium compounds of salicylic and anthranilic acids: examples of weak intra-molecular hydrogen bonding. Dalton Trans 1253–1258Google Scholar
  7. Caravan P, Ellison JJ, McMurry TJ, Lauffer RB (1999) Gadolinium(III) chelates as MRI contrast agents: structure, dynamics, and applications. Chem Rev 99:2293–2352CrossRefGoogle Scholar
  8. Carenco S, Boissière C, Nicole L, Sanchez C, Le Floch P, Mézailles N (2010) Controlled design of tuneable monodisperse nickel nanoparticles. Chem Mater 22:1340–1349CrossRefGoogle Scholar
  9. Chakroune N, Viau G, Ricolleau C, Fievet-Vincent F, Fievet F (2003) Cobalt-based anisotropic particles prepared by the polyol process. J Mater Chem 13:312–318CrossRefGoogle Scholar
  10. Chaudret B (2005) Organometallic approach to nanoparticles synthesis and self-organization. C R Phys 6:117–131CrossRefGoogle Scholar
  11. Che SL, Takada K, Takashima K, Sakurai O, Shinazaki K, Mizutani N (1999) Preparation of dense spherical Ni particles and hollow NiO particles by spray pyrolysis. J Mater Sci 6:1313–1318CrossRefGoogle Scholar
  12. Chen DH, Wu SH (2000) Synthesis of nickel nanoparticles in water-in-oil microemulsions. Chem Mater 12:1354–1360CrossRefGoogle Scholar
  13. Chow GM, Ding J, Zhang J, Lee KY, Surani D, Lawrence SH (1999) Magnetic and hardness properties f nanostructured Ni–C films deposited by a non-aqueous electroless method. Appl Phys Lett 74:1889–1891CrossRefGoogle Scholar
  14. Cordente N, Respaud M, Senocq F, Casonove MJ, Amiens C, Chaudret B (2001) Synthesis and magnetic properties of nickel nanorods. Nano Lett 1:565–568CrossRefGoogle Scholar
  15. Davar F, Fereshteh Z, Salavati-Niasari M (2009) Nanoparticles Ni and NiO: synthesis, characterization and magnetic properties. J Alloy Compd 476:797–801CrossRefGoogle Scholar
  16. De Caro D, Bradley JS (1997) Surface spectroscopic study of carbon monoxide adsorption on nanoscale nickel colloids prepared from a zerovalent organometallic precursor. Langmuir 13:3067–3069CrossRefGoogle Scholar
  17. Dominguez-Crespo MA, Ramírez-Meneses E, Montiel-Palma V, Torres Huerta AM, Dorantes Rosales H (2009) Synthesis and electrochemical characterization of stabilized nickel nanoparticles. Int J Hydrogen Energy 34:1664–1676Google Scholar
  18. Durán Pachón L, Thathagar MB, Hartl F, Rothenberg G (2006) Palladium-coated nickel nanoclusters: new Hiyama cross-coupling catalysts. Phys Chem Chem Phys 8:151–157CrossRefGoogle Scholar
  19. Duteil A, Quéau R, Chaudret B, Mazel R, Roucau C, Bradley JS (1993) Preparation of organic solutions or solid films of small particles of ruthenium, palladium, and platinum from organometallic precursors in the presence of cellulose derivatives. Chem Mater 5:341–347CrossRefGoogle Scholar
  20. Ely TO, Amiens C, Chaudret B, Snoeck E, Verelst M, Respaud M, Broto JM (1999) Synthesis of nickel nanoparticles. Influence of aggregation induced by modification of poly(vinylpyrrolidone) chain length on their magnetic properties. Chem Mater 11:526–529CrossRefGoogle Scholar
  21. Ferrari EF, da Silva FCS, Knobel M (1997) Influence of the distribution of magnetic moments on the magnetization and magnetoresistance in granular alloys. Phys Rev B 56:6086–6093CrossRefGoogle Scholar
  22. Gong J, Wang LL, Liu Y, Yang JH, Zong ZG (2008) Structural and magnetic properties of hcp and fcc Ni nanoparticles. J Alloys Compd 457:6–9CrossRefGoogle Scholar
  23. Green M, O’Brien P (2001) The preparation of organically functionalised chromium and nickel nanoparticles. Chem Commun 1912–1913Google Scholar
  24. He Y, Li X, Swihart MT (2005) Laser-driven aerosol synthesis of nickel nanoparticles. Chem Mater 17:1017–1026CrossRefGoogle Scholar
  25. Hou Y, Gao S (2003) Monodisperse nickel nanoparticles prepared from a monosurfactant system and their magnetic properties. J Mater Chem 13:1510–1512CrossRefGoogle Scholar
  26. Hyungsoo C, Sungho P, Tae Hyung K (2003) Novel nickel precursors for chemical vapor deposition. Chem Mater 15:3735–3738CrossRefGoogle Scholar
  27. Kronmüller H, Fähnle M (2003) Micromagnetism and the microstructure of ferromagnetic solids. Cambridge University Press, CambridgeGoogle Scholar
  28. Kurihara LK, Chow GM, Schoen PE (1995) Nanocrystalline metallic powders and films produced by the polyol method. Nanostruct Mater 5:607–613CrossRefGoogle Scholar
  29. Lu A-H, Salabas EL, Schüth F (2007) Magnetische Nanopartikel: Synthese, Stabilisierung, Funktionalisierung und Anwendung. Angew Chem 46:1242–1266CrossRefGoogle Scholar
  30. Mandal M, Kundu S, Sau TK, Yusuf SM, Pal T (2003) Synthesis and characterization of superparamagnetic Ni–Pt nanoalloy. Chem Mater 15:3710–3715CrossRefGoogle Scholar
  31. Margeat O, Ciuculescu D, Lecante P, Respaud M, Amiens C, Chaudret B (2007) NiFe nanoparticles: a soft magnetic material? Small 3:451–458CrossRefGoogle Scholar
  32. Migowski P, Machado G, Texeira SG, Alves MCM, Morais J, Traverse A, Dupond J (2007) Synthesis and characterization of nickel nanoparticles dispersed in imidazolium ionic liquids. Phys Chem Chem Phys 9:4814–4821CrossRefGoogle Scholar
  33. Nakamoto K (1997) Infrared and Raman spectra of inorganic and coordination compounds, part B: applications in coordination organometallic and bioinorganic chemistry, 5th edn. Wiley, New YorkGoogle Scholar
  34. O’Grady K, White RL, Grundy PJ (1998) Whiter magnetic recording. J Magn Mater 177:886–891CrossRefGoogle Scholar
  35. Pang T, Meng GW, Fang Q, Zhang LD (2003) Silver nanowire array infrared polarizers. Nanotechnology 14:20–24CrossRefGoogle Scholar
  36. Park J, Kang E, Son SU, Park HM, Lee MK, Kim J, Kim KW, Noh HJ, Park JH, Bae CJ, Park J-G, Hyeon T (2005) Monodisperse nanoparticles of Ni and NiO: synthesis, characterization, self-assembled superlattices, and catalytic applications in the Suzuki coupling reaction. Adv Mater 17:429–434CrossRefGoogle Scholar
  37. Peng ZA, Peng X (2001) Mechanisms of the shape evolution of CdSe nanocrystals. J Am Chem Soc 123:1389–1395CrossRefGoogle Scholar
  38. Petit C, Taleb A, Pileni MP (1999) Cobalt nanosized particles organized in a 2D superlattice: synthesis, characterization, and magnetic properties. J Phys Chem B 103:1805–1810CrossRefGoogle Scholar
  39. Philippot K, Chaudret B (2007) Organometallic derived—I: metals, colloids, and nanoparticle. In: Dermot O’Hare (vol ed) Comprehensive organometallic chemistry III, vol 12. Elsevier, Amsterdam, pp 71–99Google Scholar
  40. Pick S, Dreyssé H (2000) Tight-binding study of ammonia and hydrogen adsorption on magnetic cobalt systems. Surf Sci 460:153–161CrossRefGoogle Scholar
  41. Puntes VF, Krishnan KM, Alivisatos AP (2001) Colloidal nanocrystal shape and size control: the case of cobalt. Science 291:2115–2117CrossRefGoogle Scholar
  42. Ramesh S, Koltypin Y, Prozorov R, Gedanken A (1997) Sonochemical deposition and characterization of nanophasic amorphous nickel on silica microspheres. Chem Mater 9:546–551CrossRefGoogle Scholar
  43. Ramirez E, Eradès L, Philippot K, Lecante P, Chaudret B (2007) Shape control of platinum nanoparticles. J Adv Funct Mater 17:2219–2228CrossRefGoogle Scholar
  44. Respaud M, Broto JM, Rakoto H, Fert AR, Thomas L, Barbara B, Verelst M, Snoeck E, Lecante P, Mosset A, Osuna J, Ould Ely T, Amiens C, Chaudret B (1998) Surface effects on the magnetic properties of ultrafine cobalt particles. Phys Rev B 57:2925–2935CrossRefGoogle Scholar
  45. Rosenweig RE (1989) Magnetic fluids: phenomena and process applications. Chem Eng Prog 85:53–61Google Scholar
  46. Santini O, De Moraes AR, Mosca DH, De Souza PEN, De Oliveira AJA, Marangoni R, Wypych F (2005) Structural and magnetic properties of Fe and Co nanoparticles embedded in powdered Al2O3. J Colloid Interface Sci 289:63–70CrossRefGoogle Scholar
  47. Schaefer ZL, Ke X, Schiffer P, Schaak RE (2008) Direct solution synthesis, reaction pathway studies, and structural characterization of crystalline Ni3B nanoparticles. J Phys Chem C 112:19846–19851CrossRefGoogle Scholar
  48. Schmid G (1992) Large clusters and colloids. Metals in the embryonic state. Chem Rev 92:1709–1727CrossRefGoogle Scholar
  49. Sun S, Murray CB, Weller D, Folks L, Moser A (2000) Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287:1989–1992CrossRefGoogle Scholar
  50. Thompson GB, Banerjee R, Zhang XD, Anderson PM, Fraser HL (2002) Chemical ordering and texture in sputter-deposited Ni3Al thin films. Acta Mater 50:643–651CrossRefGoogle Scholar
  51. Toneguzzo P, Viau G, Acher O, Guillet F, Bruneton E, Fievet-Vincent F, Fievet F (2000) CoNi and FeCoNi fine particles prepared by the polyol process: physico-chemical characterization and dynamic magnetic properties. J Mater Sci 35:3767–3784CrossRefGoogle Scholar
  52. Tzitzios V, Basina G, Gjoka M, Alexandrakis V, Goergakilas V, Niarchos D, Boukos N, Petridis D (2006) Chemical synthesis and characterization of hcp Ni nanoparticles. Nanotechnology 17:3750–3755CrossRefGoogle Scholar
  53. Wang ZL, Petrovski JM, Green TC, El-Sayed MA (1998) Shape transformation and surface melting of cubic and tetrahedral platinum nanocrystals. J Phys Chem B 102:6145–6151CrossRefGoogle Scholar
  54. Wang ZK, Kuok MH, Ng SC, Lockwood DJ, Cottam MG, Nielsch K, Wehrspohn RB, Gösele U (2002) Spin-wave quantization in ferromagnetic nickel nanowires. Phys Rev Lett 89:27201CrossRefGoogle Scholar
  55. Wiesbrock F, Schmidbaur H (2002) The structural chemistry of lithium, sodium and potassium anthranilate hydrates. Dalton Trans 4703–4708Google Scholar
  56. Wu SH, Chen DH (2004) Synthesis and stabilization of Ni nanoparticles in a pure aqueous CTAB solution. Chem Lett 33:406CrossRefGoogle Scholar
  57. Xu W, Liew KY, Liu H, Huang T, Sun C, Zhao Y (2008) Microwave-assisted synthesis of nickel nanoparticles. Mater Lett 62:2571–2573CrossRefGoogle Scholar
  58. Yin H, Chow GM (2002) Anomalous electroless polyol deposition of FeNi powders and films. J Electrochem Soc 149:C68CrossRefGoogle Scholar
  59. Zabow G, Dodd S, Moreland J, Korestky A (2008) Micro-engineered local field control for high-sensitivity multispectral MRI. Nature 453:1058–1063CrossRefGoogle Scholar
  60. Zhang DE, Ni XM, Zhang HG, Li Y, Zhang XJ, Yang ZP (2005) Synthesis of needle-like nickel nanoparticles in water-in-oil microemulsion. Mater Lett 59:2011–2014CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • E. Ramírez-Meneses
    • 1
    • 2
  • I. Betancourt
    • 3
  • F. Morales
    • 3
  • V. Montiel-Palma
    • 4
  • C. C. Villanueva-Alvarado
    • 2
  • M. E. Hernández-Rojas
    • 3
  1. 1.Departamento de Ingeniería y Ciencias QuímicasUniversidad IberoamericanaMexicoMexico
  2. 2.Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada-Instituto Politécnico Nacional, CICATA AltamiraAltamiraMexico
  3. 3.Instituto de Investigaciones en MaterialesUniversidad Nacional Autónoma de MéxicoMexicoMexico
  4. 4.Centro de Investigaciones QuímicasUniversidad Autónoma del Estado de MorelosCuernavacaMexico

Personalised recommendations