Journal of Nanoparticle Research

, Volume 13, Issue 1, pp 311–319 | Cite as

Effect of the concentration of precursors on the microwave absorbent properties of Zn/Fe oxide nanopowders

  • P. C. Fannin
  • C. N. Marin
  • I. Malaescu
  • N. Stefu
  • P. Vlăzan
  • S. Novaconi
  • S. Popescu
Research Paper


Zn/Fe oxide compound powders were obtained by the hydrothermal method using ferric nitrate Fe(NO3)3·9H2O and zinc nitrate Zn(NO3)2·6H2O at 200 °C and different precursor molar ratios x = Fe3+/Zn2+ equal to 2.8/0.2, 2.5/0.5, 1.8/1.2 and 1.5/1.5. The samples were characterized by X-ray diffraction (XRD) and scanning electron microscopy/energy dispersive X-ray analysis (SEM–EDAX). Room temperature measurements of the frequency dependence of the complex magnetic permeability and complex dielectric permittivity, over the frequency range from 0.1 to 6 GHz, were performed. For precursor molar ratios x = 2.8/0.2, x = 1.8/1.2 and x = 1.5/1.5 the obtained samples showed a ferromagnetic-like resonance behaviour. This behaviour was assigned to the prevalent compounds in the obtained samples, Fe2O3 (for x = 2.8/0.2) and ZnFe2O4 (for x = 1.8/1.2 and x = 1.5/1.5). Based on the magnetic and dielectric measurements, the microwave absorbent properties of the four samples were analysed, and the sample containing mostly of ZnFe2O4 (for x = 1.8/1.2) was found to be the best electromagnetic absorber in the frequency range 1.36–6 GHz.


Microwave absorber Zn/Fe oxide Hydrothermal method Complex magnetic permeability Complex dielectric permittivity Nanoparticles 


  1. Cheng YL, Dai JM, Wu DJ, Sun YP (2010) Electromagnetic and microwave absorption properties of carbonyl iron/La0.6Sr0.4MnO3 composites. J Magn Magn Mater 322(1):97–101CrossRefGoogle Scholar
  2. Chu X, Liu X, Meng G (1999) Preparation and gas sensitivity properties of ZnFe2O4 semiconductors. Sens Actuators B 55(1):19–22CrossRefGoogle Scholar
  3. Collin RE (1966) Foundation for microwave engineering. McGraw Hill, New YorkGoogle Scholar
  4. Duan Y, Ma H, Li X, Liu S, Ji Z (2010) The microwave electromagnetic characteristics of manganese dioxide with different crystallographic structures. Physica B 405(7):1826–1831CrossRefGoogle Scholar
  5. Gao D, Zhang Z, Fu J, Xu Y, Qi J, Xue D (2009) Room temperature ferromagnetism of pure ZnO nanoparticles. J Appl Phys 105(11):113928. doi:10.1063/1.3143103 CrossRefGoogle Scholar
  6. Ghasemi A, Morisako A (2008) Static and high frequency magnetic properties of Mn–Co–Zr substituted Ba-ferrite. J Alloys Compd 456(1–2):485–491CrossRefGoogle Scholar
  7. El-Shobaky GA, Turky AM, Mostafa NY, Mohamed SK (2010) Effect of preparation conditions on physicochemical, surface and catalytic properties of cobalt ferrite prepared by coprecipitation. J Alloys Compd 493(1–2):415–422CrossRefGoogle Scholar
  8. Fannin PC, Vincent D, Noyel G (1999) On the measurement of the complex susceptibility and permittivity of magnetic fluids by means of two different measurement techniques. J Magn Magn Mater 201(1–3):116–118CrossRefGoogle Scholar
  9. Fannin PC, Malaescu I, Marin CN, Stefu N (2009) Microwave propagation parameters in magnetic fluids. Eur Phys J E 29(3):299–303CrossRefGoogle Scholar
  10. Franco A Jr, Celma de Oliveira LE, Novak MA, Wells PR Jr (2007) Synthesis of nanoparticles of CoxFe(3–x)O4 by combustion reaction method. J Magn Magn Mater 308(2):198–202CrossRefGoogle Scholar
  11. Hofmann M, Campbell SJ, Ehrhardt H, Feyerherm R (2004) The magnetic behaviour of nanostructured zinc ferrite. J Mater Sci 39(16–17):5057–5065CrossRefGoogle Scholar
  12. Jeyadevan B, Tohji K, Nakatsuka K (1994) Structure analysis of coprecipitated ZnFe2O4 by extended X-ray absorption fine structure. J Appl Phys 76(10):6325. doi:10.1063/1.358255 CrossRefGoogle Scholar
  13. Jin H-b, Cao M-s, Zhou W, Agathopoulos S (2010) Microwave synthesis of Al-doped SiC powders and study of their dielectric properties. Mater Res Bull 45(2):247–250CrossRefGoogle Scholar
  14. Kamiyama T, Haneda K, Sato T, Ikeda S, Asano H (1992) Cation distribution in ZnFe2O4 fine particles studied by neutron powder diffraction. Solid State Commun 81(7):563–566CrossRefGoogle Scholar
  15. Liu J, Lu G, He H, Tan H, Xu T, Xu K (1996) Studies on photocatalytic activity of zinc ferrite catalysts synthesized by shock waves. Mater Res Bull 31(9):1049–1056CrossRefGoogle Scholar
  16. Morin FJ (1950) Magnetic susceptibility of αFe2O3 and αFe2O3 with added titanium. Phys Rev 78(6):819–820CrossRefGoogle Scholar
  17. Owens FJ (2009) Ferromagnetic resonance observation of a phase transition in magnetic field-aligned Fe2O3 nanoparticles. J Magn Magn Mater 321(15):2386–2391CrossRefGoogle Scholar
  18. Qiu J, Wang C, Gu M (2004) Photocatalytic properties and optical absorption of zinc ferrite nanometer films. Mater Sci Eng B 112(1):1–4CrossRefGoogle Scholar
  19. Sharma Prashant K, Dutta Ranu K, Pandey Avinash C, Samar Layek, Verma HC (2009) Effect of iron doping concentration on magnetic properties of ZnO nanoparticles. J Magn Magn Mater 321(17):2587–2591CrossRefGoogle Scholar
  20. Sunny V, Kurian P, Mohanan P, Joy PA, Anantharaman MR (2010) A flexible microwave absorber based on nickel ferrite nanocomposite. J Alloys Compd 489(1):297–303CrossRefGoogle Scholar
  21. Tanaka K, Makita M, Shimizugawa Y, Hirao K, Soga N (1998) Structure and high magnetization of rapid quenched zinc ferrite. J Phys Chem Solids 59(9):1611–1618CrossRefGoogle Scholar
  22. Toledo-Antonio JA, Nava N, Martínez M, Bokhimi X (2002) Correlation between the magnetism of non-stoichiometric zinc ferrites and their catalytic activity for oxidative dehydrogenation of 1-butene. Appl Catal A 234(1–2):137–144Google Scholar
  23. Tsukada M, Abe K, Yonemochi Y, Ameyama A, Kamiya H, Kambara S, Moritomi H, Uehara T (2008) Dry gas cleaning in coal gasification systems for fuel cells using composite sorbents. Powder Technol 180(1–2):232–238CrossRefGoogle Scholar
  24. Valenzuela MA, Bosch P, Jiménez-Becerrill J, Quiroz O, Páez AI (2002) Preparation, characterization and photocatalytic activity of ZnO, Fe2O3 and ZnFe2O4. J Photochem Photobiol A 148(1–3):177–182CrossRefGoogle Scholar
  25. Vonsovski SV (1974) Magnetism. Wiley, New YorkGoogle Scholar
  26. Wang L, Song J, Zhang Q, Huang X, Xu N (2009) The microwave magnetic performance of Sm3+ doped BaCo2Fe16O27. J Alloys Compd 481(1–2):863–866CrossRefGoogle Scholar
  27. Wesselinowa JM (2010) Size and anisotropy effects on magnetic properties of antiferromagnetic nanoparticles. J Magn Magn Mater 322(2):234–237CrossRefGoogle Scholar
  28. Xie G, Yuan L, Wang P, Zhang B, Lin P, Lu H (2010) GHz microwave properties of melt spun Fe–Si alloys. J Non-Cryst Solids 356(2):83–86CrossRefGoogle Scholar
  29. Yuan Z-H, Zhang L-D (2001) Synthesis, characterization and photocatalytic activity of ZnFe2O4/TiO2 nanocomposite. J Mater Chem 11(4):1265. doi:10.1039/b006994i CrossRefGoogle Scholar
  30. Zhang W-H, Zhang W-D, Zhou J-F (2010) Solvent thermal synthesis and gas-sensing properties of Fe-doped ZnO. J Mater Sci 45(1):209–215CrossRefGoogle Scholar
  31. Zhao L, Zhang H, Xing Y, Song S, Yu S, Shi W, Guo X, Yang J, Lei Y, Cao F (2008) Studies on the magnetism of cobalt ferrite nanocrystals synthesized by hydrothermal method. J Solid State Chem 181(2):245–252CrossRefGoogle Scholar
  32. Zhao D-L, Lv Q, Shen Z-M (2009) Fabrication and microwave absorbing properties of Ni–Zn spinel ferrites. J Alloys Compd 480(2):634–638CrossRefGoogle Scholar
  33. Zhu CL, Chen YJ, Wang RX, Wang LJ, Cao MS, Shi XL (2009) Synthesis and enhanced ethanol sensing properties of α-Fe2O3/ZnO heteronanostructures. Sens Actuators B 140(1):185–189CrossRefGoogle Scholar
  34. Zysler RD, Vasquez Mansilla M, Fiorani D (2004) Surface effects in α-Fe2O3 nanoparticles. Eur Phys J B 41(2):171–175CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • P. C. Fannin
    • 1
  • C. N. Marin
    • 2
  • I. Malaescu
    • 2
  • N. Stefu
    • 2
  • P. Vlăzan
    • 3
  • S. Novaconi
    • 3
  • S. Popescu
    • 3
  1. 1.Department of Electronic and Electrical EngineeringTrinity CollegeDublin 2Ireland
  2. 2.Faculty of Physics, Department of Electricity and MagnetismWest University of TimisoaraTimisoaraRomania
  3. 3.Condensed Matter DepartmentNational Institute for Research and Development in Electrochemistry and Condensed Matter, TimisoaraTimisoaraRomania

Personalised recommendations