Journal of Nanoparticle Research

, Volume 13, Issue 1, pp 245–255 | Cite as

Morphology and magnetic properties of island-like Co and Ni films obtained by de-wetting

  • P. Tiberto
  • S. Gupta
  • S. Bianco
  • F. Celegato
  • P. Martino
  • A. Chiolerio
  • A. Tagliaferro
  • P. Allia
Research Paper

Abstract

The morphological, structural, and magnetic properties of Co and Ni films of different thicknesses grown by RF sputtering on a Si–SiO substrate and submitted to controlled diffusion of atoms on the substrate (de-wetting) are studied through X-ray diffraction (XRD), atomic force microscopy, X-ray photoelectron spectroscopy, and alternating-gradient magnetometry. For both metals, de-wetting treatment leads to the growth of non-percolating, metallic nanoislands characterized by a distribution of sizes and aspect ratios. XRD spectra reveal a polycrystalline multi-component structure evolving by effect of de-wetting and directly affecting the magnetic properties of films. The magnetic response after de-wetting is consistent with the formation of a nanogranular magnetic phase characterized by a complex, thickness-dependent magnetic behavior originating from the simultaneous presence of superparamagnetic and blocked-particle contributions. At intermediate film thickness (around 10 nm), a notable enhancement in magnetic coercivity is observed for both metals with respect to the values measured in precursor films and in their bulk counterparts.

Keywords

Magnetic nanoparticles Magnetic thin films De-wetting technique Coercive field 

References

  1. Bouville M, Chi D, Srolovitz DJ (2007) Grain-boundary grooving and agglomeration of alloy thin films with a slow-diffusing species. Phys Rev Lett 98:085503-1–085503-4. doi:10.1103/PhysRevLett.98.085503 CrossRefGoogle Scholar
  2. Bower C, Zhou O, Zhu W, Werder DJ, Jin S (2009) Nucleation and growth of carbon nanotubes by microwave plasma chemical vapor deposition. Appl Phys Lett 77:2767–2769. doi:10.1063/1.1319529 CrossRefGoogle Scholar
  3. Chang HW, Tsay JS, Hung YC, Yuan FT, Chan WY, Su WB, Chang CS, Yao YD (2007) Magnetic properties and microstructure of ultrathin Co/Si(111) films. J Appl Phys 101:09D124-1–09D124-3. doi:10.1063/1.2712532 Google Scholar
  4. Chiolerio A, Musso S, Sangermano M, Giorcelli M, Bianco S, Coïsson M, Priola A, Allia P, Tagliaferro A (2008) Preparation of polymer-based composite with magnetic anisotropy by oriented carbon nanotube dispersion. Diam Relat Mater 17:1590–1595. doi:10.1016/j.diamond.2008.01.117 CrossRefGoogle Scholar
  5. Cullity BD (1972) Introduction to magnetic materials. Addison-Wesley, ReadingGoogle Scholar
  6. Gadkari PR, Warren AP, Todi RM, Petrova RV, Coffey KR (2005) Comparison of the agglomeration behavior of thin metallic films on SiO2. J Vac Sci Technol A 23:1152–1161. doi:10.1116/1.1861943 CrossRefGoogle Scholar
  7. Goncharov A, Zhukov AA, Bartlett PN, Ghanem MA, Boardman R, Fangohr H, de Groot PAJ (2005) Ordered sub-micron magnetic dot arrays using self-assembly template method. J Magn Magn Mater 286:1–4. doi:10.1016/j.jmmm.2004.09.014 CrossRefGoogle Scholar
  8. Hirose T, Teranishi H, Ohsawa M, Ueda A, Ishiwata O, Ataka T, Ozawa K, Komiya S, Iida A (1997) In-plane anisotropy in thin-film media analyzed by grazing incidence X-ray diffraction [CoCrTaPt/Cr]. IEEE Trans Magn 33:2971–2973. doi:10.1109/20.617814 CrossRefGoogle Scholar
  9. Konno TJ, Sinclair R (1994) Crystallization of co-sputtered amorphous cobalt–carbon alloys. Acta Metall Mater 42:1231–1247. doi:10.1016/0956-7151(94)90140-6 CrossRefGoogle Scholar
  10. Kumar P, Krishna MG, Bhattacharya AK (2009) Effect of microstructural evolution on magnetic properties of Ni thin films. Bull Mater Sci 32:263–270CrossRefGoogle Scholar
  11. Li SP, Samad A, Lew WS, Xu YB, Bland JAC (2000) Magnetic domain reversal in ultrathin Co(001) films probed by giant magnetoresistance measurements. Phys Rev B 61:6871–6875. doi:10.1103/PhysRevB.61.6871 CrossRefGoogle Scholar
  12. Martin JI, Nogues J, Liu K, Vincent JL, Schuller IK (2003) Ordered magnetic nanostructures: fabrication and properties. J Magn Magn Mater 256:449–501. doi:1016/S0304-8853(02)00898-3 CrossRefGoogle Scholar
  13. Munford ML, Sartorelli ML, Seligman L, Pasa AA (2002) Morphology and magnetic properties of Co thin films electrodeposited on Si. J Electrochem Soc 149:C274–C279. doi:10.1149/1.1468646 CrossRefGoogle Scholar
  14. Nalwa HS (ed) (2002) Magnetic nanostructures. ASP, Stevenson RanchGoogle Scholar
  15. Neugebauer CA (1959) Saturation magnetization of nickel films of thickness less than 100 A. Phys Rev 116:1441–1446. doi:10.1103/PhysRev.116.1441 CrossRefGoogle Scholar
  16. Oh YJ, Ross CA, Jung YS, Wang Y, Thompson CV (2009) Cobalt nanoparticle arrays made by templated solid-state dewetting. Small 5:820–825. doi:10.1002/smll.200801433 Google Scholar
  17. Ohsawa M, Hirose T, Teranish H, Ishiwata O, Ataka T, Takahashi N, Komiya S, Iida A (1999) In-plane structural analysis of CoCr thin-film magnetic media by grazing incidence X-ray diffraction. Jpn J Appl Phys 38(Supplment):365–368Google Scholar
  18. Respaud M et al (1998) Surface effects on the magnetic properties of ultrafine cobalt particles. Phys Rev B57:2925–2935. doi:10.1103/PhysRevB.57.2925 Google Scholar
  19. Richardson JT, Scates R, Twigg MV (2008) X-ray diffraction study of nickel oxide reduction by hydrogen. Appl Catal A Gen 246:137–150. doi:10.1016/S0926-860X(02)00669-5 CrossRefGoogle Scholar
  20. Saavedra HM, Mullen TJ, Zhang P, Dewey DC, Claridge SA, Weiss PS (2010) Hybrid strategies in nanolithography. Rep Prog Phys 73:036501–036600. doi:10.1088/0034-4885/73/3/036501 CrossRefGoogle Scholar
  21. Shern CS, Ho HY, Lin SH, Su CW (2004) Structure and magnetic properties of ultrathin Ni films on Pt (111) on Co buffer layers. Phys Rev B 70:214438-1–214438-6. doi:10.1103/PhysRevB.70.214438 CrossRefGoogle Scholar
  22. Sieradzki K, Bailey K, Alford TL (2001) Agglomeration and percolation conductivity. Appl Phys Lett 79:3401–3403. doi:10.1063/1.1419043 CrossRefGoogle Scholar
  23. Smyth JF, Schultz S, Kern D, Schmid H, Yee D (1988) Hysteresis of submicron permalloy particulate arrays. J Appl Phys 63:4237–4239. doi:10.1063/1.340217 CrossRefGoogle Scholar
  24. Soldano C, Kar S, Talapatra S, Nayak S, Ajayan PM (2008) Detection of nanoscale magnetic activity using a single carbon nanotube. Nano Lett 8:4498–4505. doi:10.1021/nl802456t CrossRefGoogle Scholar
  25. Srolovitz DJ, Safran SA (1986) Capillary instabilities in thin films. I. Energetics. J Appl Phys 60:247–254. doi:10.1063/1.337689 CrossRefGoogle Scholar
  26. Teranishi H, Hirose T, Ohsawa M, Ishiwata O, Ataka T, Ozawa K, Komiya S, Iida A (1997) Study of the in-plane crystallographic structure and coercivity of CoCrTaPt thin-film magnetic recording media. J Magn Soc Jpn 21:209–212CrossRefGoogle Scholar
  27. Terrado E, Tacchini I, Benito AM, Maser WK, Martinez MT (2009) Optimizing catalyst nanoparticle distribution to produce densely-packed carbon nano tube growth. Carbon 47:1989–2001. doi:10.1016/j.carbon.2009.03.045 CrossRefGoogle Scholar
  28. Wang H, Wong SP, Cheung WY, Ke N, Chiah MF, Liu H, Zhang XX (2000) Microstructure evolution, magnetic domain structures, and magnetic properties of Co–C nanocomposite films prepared by pulsed-filtered vacuum arc deposition. J Appl Phys 88:2063–2067. doi:10.1063/1.1305557 CrossRefGoogle Scholar
  29. Wolf JA, Krebs JJ, Prinz GA (1994) Growth and magnetic characterization of face centered cubic Co on (001) diamond. Appl Phys Lett 65:1057–1059. doi:10.1063/1.112151 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • P. Tiberto
    • 1
  • S. Gupta
    • 2
  • S. Bianco
    • 3
  • F. Celegato
    • 1
  • P. Martino
    • 2
  • A. Chiolerio
    • 2
  • A. Tagliaferro
    • 2
  • P. Allia
    • 2
  1. 1.Electromagnetism DivisionINRIMTurinItaly
  2. 2.Politecnico di Torino, DISMIC and DIFISTurinItaly
  3. 3.Italian Institute of Technology—IIT@POLITO, Center for Space Human RoboticsTurinItaly

Personalised recommendations