Particle speciation during PEG–Fe3O4 hybrid nanoparticle self-assembly on Si(Ti)O2


The kinetics of assembly of polyethylene glycol (PEG)-coated superparamagnetic Fe3O4 nanoparticles in aqueous suspension on planar Si(Ti)O2 surfaces have been determined using high-resolution optical waveguide lightmode spectroscopy (OWLS). Analysis of the results revealed that the initially uniform population was spontaneously transformed into two types of particles with significantly different adsorption behaviour.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    PEG has been covalently attached to magnetite nanoparticles in order to reduce their immunogenicity (Zhang et al. 2002).


  1. Ansari F, Grigoriev PA, Libor S, Tothill I, Ramsden JJ (2009) DBT degradation enhancement by decorating Rhodococcus erythropolis IGST8 with magnetic Fe3O4 nanoparticles. Biotechnol Bioeng 102:1505–1512

    CAS  Article  Google Scholar 

  2. Arumugam P, Xu H, Srivastava S, Rotello VM (2007) Bricks and mortar nanoparticles self-assembly using polymers. Polym Int 56:461–466

    CAS  Article  Google Scholar 

  3. Cacace MG, Landau EM, Ramsden JJ (1997) The Hofmeister series: salt and solvent effects on interfacial phenomena. Q Rev Biophys 30:241–277

    CAS  Article  Google Scholar 

  4. Frka-Petesic B, Fresnais J, Berret JF, Dupuis V, Sandre O (2009) Stabilization and controlled association of superparamagnetic nanoparticles using block copolymers. J Magn Magn Mater 321:667–670

    CAS  Article  Google Scholar 

  5. Graham T (1862) On liquid diffusion applied to analysis. J Chem Soc 15:216–270

    Article  Google Scholar 

  6. Kurrat R, Prenosil JE, Ramsden JJ (1997) Kinetics of human and bovine serum albumin adsorption at silica–titania surfaces. J Colloid Interface Sci 185:1–8

    CAS  Article  Google Scholar 

  7. Lide DR (2005) Handbook of chemistry and physics. CRC Press, Boca Raton, p 4-151

    Google Scholar 

  8. Lin XM, Samia ACS (2006) Synthesis, assembly and physical properties of magnetic nanoparticles. J Magn Magn Mater 305:100–109

    CAS  Article  Google Scholar 

  9. Ramsden JJ (1994) Porosity of pyrolyzed sol–gel wave-guides. J Mater Chem 4:1263–1265

    CAS  Article  Google Scholar 

  10. Ramsden JJ (2006) High resolution molecular microscopy. In: Dejardin Ph (ed) Proteins at solid–liquid interfaces. Springer, Heidelberg, pp 23–49

    Google Scholar 

  11. Ramsden JJ (2010) Concepts in self-assembly. In: Geckeler KE, Rosenberg E (eds) Functional nanomaterials. American Scientific Publishers, Valencia, pp 767–790

    Google Scholar 

  12. Ramsden JJ, Máté M (1998) Kinetics of monolayer particle deposition. J Chem Soc Faraday Trans 94:783–788

    CAS  Article  Google Scholar 

  13. Schaaf P, Talbot J (1989) Surface exclusion effects in adsorption processes. J Chem Phys 91:4401–4409

    CAS  Article  Google Scholar 

  14. Sun S, Anders S, Hamann HF, Thiele JU, Baglin JE, Thomson T, Fullerton EE, Murray CB, Terris BD (2002) Polymer mediated self-assembly of magnetic nanoparticles. J Am Chem Soc 124:2884–2885

    CAS  Article  Google Scholar 

  15. Zhang Y, Kohler N, Zhang M (2002) Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake. Biomaterials 23:1553–1561

    CAS  Article  Google Scholar 

Download references


This work was supported by the Hungarian Scientific Research Fund (OTKA PD 73084) and by the European Commission (OPTIBIO 231055).

Author information



Corresponding author

Correspondence to Farahnaz Ansari.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ansari, F., Kavosh, M., Horvath, R. et al. Particle speciation during PEG–Fe3O4 hybrid nanoparticle self-assembly on Si(Ti)O2 . J Nanopart Res 13, 193–198 (2011).

Download citation


  • Optical waveguide lightmode spectroscopy
  • Magnetite
  • Adsorption
  • Desorption
  • Programmed self-assembly
  • Nanofilm