Advertisement

Journal of Nanoparticle Research

, Volume 13, Issue 1, pp 193–198 | Cite as

Particle speciation during PEG–Fe3O4 hybrid nanoparticle self-assembly on Si(Ti)O2

  • Farahnaz Ansari
  • Masoud Kavosh
  • Robert Horvath
  • Jeremy J. Ramsden
Research Paper

Abstract

The kinetics of assembly of polyethylene glycol (PEG)-coated superparamagnetic Fe3O4 nanoparticles in aqueous suspension on planar Si(Ti)O2 surfaces have been determined using high-resolution optical waveguide lightmode spectroscopy (OWLS). Analysis of the results revealed that the initially uniform population was spontaneously transformed into two types of particles with significantly different adsorption behaviour.

Keywords

Optical waveguide lightmode spectroscopy Magnetite Adsorption Desorption Programmed self-assembly Nanofilm 

Notes

Acknowledgements

This work was supported by the Hungarian Scientific Research Fund (OTKA PD 73084) and by the European Commission (OPTIBIO 231055).

References

  1. Ansari F, Grigoriev PA, Libor S, Tothill I, Ramsden JJ (2009) DBT degradation enhancement by decorating Rhodococcus erythropolis IGST8 with magnetic Fe3O4 nanoparticles. Biotechnol Bioeng 102:1505–1512CrossRefGoogle Scholar
  2. Arumugam P, Xu H, Srivastava S, Rotello VM (2007) Bricks and mortar nanoparticles self-assembly using polymers. Polym Int 56:461–466CrossRefGoogle Scholar
  3. Cacace MG, Landau EM, Ramsden JJ (1997) The Hofmeister series: salt and solvent effects on interfacial phenomena. Q Rev Biophys 30:241–277CrossRefGoogle Scholar
  4. Frka-Petesic B, Fresnais J, Berret JF, Dupuis V, Sandre O (2009) Stabilization and controlled association of superparamagnetic nanoparticles using block copolymers. J Magn Magn Mater 321:667–670CrossRefGoogle Scholar
  5. Graham T (1862) On liquid diffusion applied to analysis. J Chem Soc 15:216–270CrossRefGoogle Scholar
  6. Kurrat R, Prenosil JE, Ramsden JJ (1997) Kinetics of human and bovine serum albumin adsorption at silica–titania surfaces. J Colloid Interface Sci 185:1–8CrossRefGoogle Scholar
  7. Lide DR (2005) Handbook of chemistry and physics. CRC Press, Boca Raton, p 4-151Google Scholar
  8. Lin XM, Samia ACS (2006) Synthesis, assembly and physical properties of magnetic nanoparticles. J Magn Magn Mater 305:100–109CrossRefGoogle Scholar
  9. Ramsden JJ (1994) Porosity of pyrolyzed sol–gel wave-guides. J Mater Chem 4:1263–1265CrossRefGoogle Scholar
  10. Ramsden JJ (2006) High resolution molecular microscopy. In: Dejardin Ph (ed) Proteins at solid–liquid interfaces. Springer, Heidelberg, pp 23–49CrossRefGoogle Scholar
  11. Ramsden JJ (2010) Concepts in self-assembly. In: Geckeler KE, Rosenberg E (eds) Functional nanomaterials. American Scientific Publishers, Valencia, pp 767–790Google Scholar
  12. Ramsden JJ, Máté M (1998) Kinetics of monolayer particle deposition. J Chem Soc Faraday Trans 94:783–788CrossRefGoogle Scholar
  13. Schaaf P, Talbot J (1989) Surface exclusion effects in adsorption processes. J Chem Phys 91:4401–4409CrossRefGoogle Scholar
  14. Sun S, Anders S, Hamann HF, Thiele JU, Baglin JE, Thomson T, Fullerton EE, Murray CB, Terris BD (2002) Polymer mediated self-assembly of magnetic nanoparticles. J Am Chem Soc 124:2884–2885CrossRefGoogle Scholar
  15. Zhang Y, Kohler N, Zhang M (2002) Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake. Biomaterials 23:1553–1561CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Farahnaz Ansari
    • 1
  • Masoud Kavosh
    • 2
  • Robert Horvath
    • 1
    • 3
  • Jeremy J. Ramsden
    • 1
  1. 1.Microsystems and Nanotechnology CentreCranfield UniversityBedfordshireUK
  2. 2.Energy Technology CentreCranfield UniversityBedfordshireUK
  3. 3.Research Institute for Technical Physics and Materials Science (MTA-MFA)BudapestHungary

Personalised recommendations