Journal of Nanoparticle Research

, Volume 13, Issue 1, pp 175–184 | Cite as

Nanoparticle electrostatic loss within corona needle charger during particle-charging process

Research Paper


A numerical investigation has been carried out to examine the electrostatic loss of nanoparticles in a corona needle charger. Two-dimensional flow field, electric field, particle charge, and particle trajectory were simulated to obtain the electrostatic deposition loss at different conditions. Simulation of particle trajectories shows that the number of charges per particle during the charging process depends on the particle diameter, radial position from the symmetry axis, applied voltage, Reynolds number, and axial distance along the charger. The numerical results of nanoparticle electrostatic loss agreed fairly well with available experimental data. The results reveal that the electrostatic loss of nanoparticles increases with increasing applied voltage and electrical mobility of particles; and with decreasing particle diameter and Reynolds number. A regression equation closely fitted the obtained numerical results for different conditions. The equation is useful for directly calculating the electrostatic loss of nanoparticles in the corona needle charger during particle-charging process.


Nanoparticle Electrostatic loss Corona needle charger Modeling and simulation 


  1. Alguacil FJ, Alonso M (2006) Multiple charging of ultrafine particles in a corona charger. J Aerosol Sci 37:875–884CrossRefGoogle Scholar
  2. Aliat A, Tsai CJ, Hung CT, Wu JS (2008) Effect of free electrons on nanoparticle charging in a wire-tube negative corona discharge. Appl Phys Lett 93:154103CrossRefGoogle Scholar
  3. Aliat A, Hung CT, Tsai CJ, Wu JS (2009) Implementation of the Fuchs’ model of ion diffusion charging of nanoparticles considering the electron contribution in DC-corona chargers in high charge densities. J Phys D Appl Phys 42:125206CrossRefGoogle Scholar
  4. Alonso M, Martin MI, Alguacil FJ (2006) The measurement of charging efficiencies and losses of aerosol nanoparticles in a corona charger. J Electrostat 64:203–214CrossRefGoogle Scholar
  5. Asbach C, Kaminski H, Fissan H, Monz C, Dahmann D, Mu¨lhopt S, Paur HR, Kiesling HJ, Herrmann F, Voetz M, Kuhlbusch TAJ (2009) Comparison of four mobility particle sizers with different time resolution for stationary exposure measurements. J Nanoparticle Res 11:1593–1609CrossRefGoogle Scholar
  6. Biskos G, Reavell K, Collings N (2005) Electrostatic characterization of corona-wire aerosol charges. J Electrostat 63:69–82CrossRefGoogle Scholar
  7. Chen DR, Pui DYH (1999) Ahigh efficiency, high throughput unipolar aerosol charger for nanoparticles. J Nanoparticle Res 1:115–126CrossRefGoogle Scholar
  8. Hernandez-Sierra A, Alguacil FJ, Alonso M (2003) Unipolar charging of nanometer aerosol particles in a corona ionizer. J Aerosol Sci 34:733–745CrossRefGoogle Scholar
  9. Hinds WC (1999) Aerosol technology. Wiley, New YorkGoogle Scholar
  10. Intra P, Tippayawong N (2009) Progress in unipolar corona discharger designs for airborne particle charging: a literature review. J Electrostat 67:605–615CrossRefGoogle Scholar
  11. Kruis FE, Fissan H (2001) Nanoparticle charging in a twin Hewitt charger. J Nanoparticle Res 3:39–50CrossRefGoogle Scholar
  12. Kuga Y, Okauchi K, Takeda D, Ohira Y, Ando K (2001) Classification performance of a low pressure differential mobility analyzer for nanometer-sized particles. J Nanoparticle Res 3:175–183CrossRefGoogle Scholar
  13. Kwon SB, Sakurai H, Seto T (2007) Unipolar charging of nanoparticles by the Surface-Discharge Microplasma Aerosol Charger (SMAC). J Nanoparticle Res 9:621–630CrossRefGoogle Scholar
  14. Lehtimaki M (1987) New current measuring technique for electrical aerosol analyzers. J Aerosol Sci 18:401–407CrossRefGoogle Scholar
  15. Li L, Chen DR, Tsai PJ (2009) Use of an electrical aerosol detector (EAD) for nanoparticle size distribution measurement. J Nanoparticle Res 11:111–120CrossRefGoogle Scholar
  16. Lin GY, Tsai CJ, Chen SC, Chen TM, Li SN (2010) An efficient single-stage wet electrostatic precipitator for fine and nanosized particle control. Aerosol Sci Technol 44:38–45CrossRefGoogle Scholar
  17. Marquard A, Kasper M, Meyer J, Kasper G (2005) Nanoparticle charging efficiencies and related charging conditions in a wire-tube ESP at DC energization. J Electrostat 63:693–698CrossRefGoogle Scholar
  18. Marquard A, Meyer J, Kasper G (2006) Characterization of unipolar electric aerosol chargers—part II: application of comparison criteria to various types of nanoaerosol charging devices. J Aerosol Sci 37:1069–1080CrossRefGoogle Scholar
  19. Medved A, Dorman F, Kaufman SL, Pocher A (2000) A new corona-based charger for aerosol particles. J Aerosol Sci 31:s616–s617CrossRefGoogle Scholar
  20. Park D, An M, Hwang J (2007) Development and performance test of a unipolar diffusion charger for real-time measurements of submicron aerosol particles having a log-normal size distribution. J Aerosol Sci 38:420–430CrossRefGoogle Scholar
  21. Patankar SV (1980) Numerical heat transfer and fluid flow. Hemisphere, Washington DCGoogle Scholar
  22. Qi C, Chen DR, Pui DYH (2007) Experimental study of a new corona-based unipolar aerosol charger. J Aerosol Sci 38:775–792CrossRefGoogle Scholar
  23. Qi C, Chen DR, Greenberg P (2008) Performance study of a unipolar minicharger for a personal nanoparticle sizer. J Aerosol Sci 39:450–459CrossRefGoogle Scholar
  24. Romay FJ, Liu BYH, Pui DYH (1994) A sonic jet corona ionizer for electrostatic discharge and aerosol neutralization. Aerosol Sci Technol 20:31–41CrossRefGoogle Scholar
  25. Shin WG, Pui DYH, Fissan H, Neumann S, Trampe A (2007) Calibration and numerical simulation of nanoparticle surface area monitor (TSI Model3550 NSAM). J Nanoparticle Res 9:61–69CrossRefGoogle Scholar
  26. Tabrizi NS, Ullmann M, Vons VA, Lafont U, Schmidt-Ott A (2009) Generation of nanoparticles by spark discharge. J Nanoparticle Res 11:315–332CrossRefGoogle Scholar
  27. Tsai CJ, Chen SC, Chen HL, Chein HM, Wu CH, Chen TM (2008) Study of a nanoparticle charger containing multiple discharging wires in a tube. Sep Sci Technol 43:3476–3493CrossRefGoogle Scholar
  28. Tsai CJ, Lin GY, Chen HL, Huang CH, Alonso M (2010) Enhancement of extrinsic charging efficiency of a nanoparticle charger with multiple discharging wires. Aerosol Sci Technol. doi:10.1080/02786826.2010.492533 Google Scholar
  29. Whitby KT (1961) Generator for producing high concentration of small ions. Rev Sci Instrum 32:1351–1355CrossRefGoogle Scholar
  30. White HJ (1963) Industrial electrostatic precipitation. Addison-Wesley, Boston, MAGoogle Scholar
  31. Woo K, Chen DR, Pui DYH, Wilson WE (2001) Use of continuous measurements of integral aerosol parameters to estimate particle surface area. Aerosol Sci Technol 34:57–65Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of Environmental Engineering and HealthYuanpei UniversityHsinchuTaiwan, ROC
  2. 2.National Center for Metallurgical Research (CSIC)MadridSpain

Personalised recommendations