Journal of Nanoparticle Research

, Volume 13, Issue 1, pp 165–173 | Cite as

Investigation of magnetic active core sizes and hydrodynamic diameters of a magnetically fractionated ferrofluid

  • Markus Büttner
  • Peter Weber
  • Frank Schmidl
  • Paul Seidel
  • Michael Röder
  • Matthias Schnabelrauch
  • Kerstin Wagner
  • Peter Görnert
  • Gunnar Glöckl
  • Werner Weitschies
Research Paper

Abstract

In this work we address the question which relates between the size of the magnetically active core of magnetic nanoparticles (MNPs) and the size of the overall particle in the solution (the so-called hydrodynamic diameter dhyd) exists. For this purpose we use two methods of examination that can deliver conclusions about the properties of MNP which are not accessible with normal microscopy. On the one hand, we use temperature dependent magnetorelaxation (TMRX) method, which enables direct access to the energy barrier distribution and by using additional hysteresis loop measurements can provide details about the size of the magnetically active cores. On the other hand, to determine the size of the overall particle in the solution, we use the magnetooptical relaxation of ferrofluids (MORFF) method, where the stimulation is done magnetically while the reading of the relaxation signal, however, is done optically. As a basis for the examinations in this work we use a ferrofluid that was developed for medicinal purposes and which has been fractioned magnetically to obtain differently sized fractions of MNPs. The two values obtained through these methods for each fraction shows the success in fractioning the original solution. Therefore, one can conclude a direct correlation between the size of the magnetically active core and the size of the complete particle in the solution from the experimental results. To calculate the size of the magnetically active core we found a temperature dependent anisotropy constant which was taken into account for the calculations. Furthermore, we found relaxation signals at 18 K for all fractions in these TMRX measurements, which have their origin in other magnetic effects than the Néel relaxation.

Keywords

Magnetic nanoparticles Temperature dependent magnetorelaxation Magnetooptical relaxation Anisotropy Hydrodynamic size Magnetite Maghemite Core size Colloids 

References

  1. Antoniak C, Lindner J, Farle M (2005) Magnetic anisotropy and its temperature dependence in iron-rich FeXPt1-X nanoparticles. Europhys Lett 70:250–256CrossRefGoogle Scholar
  2. Bate G, Wohlfahrt EP (1980) Recording materials. In: Handbook of ferromagnetic materials. Elsevier, AmsterdamGoogle Scholar
  3. Berkov DV (1998) Evaluation of the energy barrier distribution in many-particle systems using the path integral approach. J Phys Condens Matter 10(5):L89–L95CrossRefGoogle Scholar
  4. Berkov DV, Kötitz R (1996) Irreversible relaxation behaviour of a general class of magnetic systems. J Phys Condens Matter 8:1257–1266CrossRefGoogle Scholar
  5. Blums EA, Cebers AO, Maiorov MM (1997) Magnetic fluids. Walter de Gruyter, BerlinGoogle Scholar
  6. Buescher K, Helm CA, Gross C, Glöckl G, Romanus E (2004) Nanoparticle composition of a ferrofluid and its effects on the magnetic properties. Langumir 20:2435–2444CrossRefGoogle Scholar
  7. Buschow KHJ (2005) Concise encyclopedia of magnetic and superconducting materials. Elsevier Science & Technology, AmsterdamGoogle Scholar
  8. Buschow KHJ, De Boer FR (2003) Physics of magnetism and magnetic materials. Kluwer Academic, New YorkGoogle Scholar
  9. Cotton AA, Mouton H (1907) Nouvelle propriété optique (biréfringence magnétique) de certains liquides organiques non colloïdaux. C R Hebd Seances Acad Sci 145:231–291Google Scholar
  10. Fiorani D (2005) Surface effects in magnetic nanoparticles. Springer, BerlinCrossRefGoogle Scholar
  11. Hanson M, Johansson C, Pedersen MS, Morup S (1995) The influence of particle size and interactions on the magnetization and susceptibility of nanometre-size particles. J Phys Condens Matter 7:9269–9277CrossRefGoogle Scholar
  12. Hergt R, Hiergeist R, Hilger I, Kaiser WA, Lapatnikov Y, Margel S, Richter U (2004) Maghemite nanoparticles with very high AC-losses for application in RF-magnetic hyperthermia. J Magn Magn Mater 270:345–357CrossRefGoogle Scholar
  13. Jeong JR, Lee SJ, Kim JD, Shin SC (2004) Magnetic properties of γ-Fe2O3 nanoparticles made by coprecipitation method. Phys Status Solidi B 241:1593–1596CrossRefGoogle Scholar
  14. Kronmüller H, Walz F (1980) Magnetic after effects in Fe3O4 and vacancy-doped magnetite. Philos Mag B 42(3):433–452CrossRefGoogle Scholar
  15. Moore A, Weissleder R, Bogdanov A (1997) Uptake of dextran-coated monocrystalline iron oxides in tumor cells and macrophages. J Magn Reson Imaging 7:1140CrossRefGoogle Scholar
  16. Perrin F (1934) Mouvement brownien d’un ellipsoide—I Dispersion diélectrique pour des molécules ellipsoidales. J Phys Radium 5(10):497–511CrossRefGoogle Scholar
  17. Romanus E, Groß C, Kötitz R, Prass S, Lange J, Weber P, Weitschies W (2001) Monitoring of biological binding reactions by magneto-optical relaxation measurements. Magnetohydrodynamics 37:328Google Scholar
  18. Romanus E, Groß C, Glöckl G, Weber P, Weitschies W (2002) Determination of biological binding reactions by field-induced birefringence measurements. J Magn Magn Mater 252:384–386CrossRefGoogle Scholar
  19. Romanus E, Berkov DV, Prass S, Groß C, Weitschies W, Weber P (2003) Determination of energy barrier distributions of magnetic nanoparticles by temperature dependent magnetorelaxometry. Nanotechnology 14:1251–1254CrossRefGoogle Scholar
  20. Romanus E, Koettig T, Glöckl G, Prass S, Schmidl F, Heinrich J, Gopinadhan G, Berkov DV, Helm CA, Weitschies W, Weber P, Seidel P (2007) Energy barrier distributions of maghemite nanoparticles. Nanotechnology 18:115709CrossRefGoogle Scholar
  21. Sasaki M, Jönsson PE, Takayama H (2005) Aging and memory effects in superparamagnets and superspin glasses. Phys Rev B 71:104405CrossRefGoogle Scholar
  22. Schmidl F, Weber P, Koettig T, Büttner M, Prass S, Becker C, Mans M, Heinrich J, Röder M, Wagner K, Berkov DV, Görnert P, Glöckl G, Weitschies W, Seidel P (2007) Characterization of energy barrier distribution of lyophilized ferrofluids by magnetic relaxation measurements. J Magn Magn Mater 311:171–175CrossRefGoogle Scholar
  23. Stoner EC, Wohlfarth EP (1948) A mechanism of magnetic hysteresis in heterogeneous alloys. Philos Trans R Soc Lond A 240(826):599–642CrossRefGoogle Scholar
  24. Suzuki M, Fullem SI, Suzuki IS (2009) Observation of superspin-glass behaviour in Fe3O4 nanoparticles. Phys Rev B 79:024418CrossRefGoogle Scholar
  25. Wagner K, Kautz A, Röder M, Schwalbe M, Pachmann K, Clement JH, Schnabelrauch M (2004) Synthesis of oligonucleotide-functionalized magnetic nanoparticles and study on their in vitro cell uptake. Appl Organomet Chem 18:514–519CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Markus Büttner
    • 1
  • Peter Weber
    • 1
  • Frank Schmidl
    • 1
  • Paul Seidel
    • 1
  • Michael Röder
    • 2
  • Matthias Schnabelrauch
    • 2
  • Kerstin Wagner
    • 2
  • Peter Görnert
    • 2
  • Gunnar Glöckl
    • 3
  • Werner Weitschies
    • 3
  1. 1.Institute of Solid State PhysicsFriedrich Schiller Universität JenaJenaGermany
  2. 2.INNOVENT e.V.JenaGermany
  3. 3.Institute of Pharmacy, Biopharmaceutics & Pharmaceutical TechnologyErnst-Moritz-Arndt University of GreifswaldGreifswaldGermany

Personalised recommendations