Journal of Nanoparticle Research

, Volume 13, Issue 1, pp 157–163 | Cite as

Facile synthesis and electrochemical properties of octahedral gold nanocrystals

  • Dawei Wang
  • Jianshe Huang
  • Yang Liu
  • Xinyi Han
  • Tianyan You
Research Paper


High-yield octahedral gold nanocrystals of ~45 nm in size have been facilely synthesized by one-pot reduction of HAuCl4 using formic acid in cetyltrimethylammonium bromide (CTAB) aqueous solution. The results showed that CTAB can promote the formation of single-crystalline nucleation and preferentially adsorb on the (111) planes of gold nanocrystals, resulting in the formation of octahedral gold nanocrystals. Formic acid acted as not only a mild reducing agent, but also could promote the formation of (111) facet. The octahedral gold nanocrystals exhibited similar cyclic voltammetry (CV) curves to single-crystal Au (111) electrode and excellent electrocatalytic activity for methanol oxidation. This synthetic strategy may open new route for facile synthesis of shape-controlled metal nanoparticles.


Nanocrystal Shape-control Single-crystal Cyclic voltammetry Electrocatalytic activity 

Supplementary material

11051_2010_14_MOESM1_ESM.doc (3.2 mb)
(DOC 3281 kb)


  1. Burda C, Chen XB, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105:1025–1102. doi:10.1021/cr030063a CrossRefGoogle Scholar
  2. Carbo-Argibay E, Rodriguez-Gonzalez B, Pacifico J, Pastoriza-Santos I, Perez-Juste J, Liz-Marzan LM (2007) Chemical sharpening of gold nanorods: the rod-to-octahedron transition. Angew Chem Int Ed 46:8983–8987. doi:10.1002/anie.200703259 CrossRefGoogle Scholar
  3. Chang CC, Wu HL, Kuo CH, Huang MH (2008) Hydrothermal synthesis of monodispersed octahedral gold nanocrystals with five different size ranges and their self-assembled structures. Chem Mater 20:7570–7574. doi:10.1021/cm8021984 CrossRefGoogle Scholar
  4. Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346. doi:10.1021/cr030698+ CrossRefGoogle Scholar
  5. Frens G (1973) Controlled nucleation for regulation of particle-size in monodisperse gold suspensions. Nat Phys Sci 241:20–22Google Scholar
  6. Hamelin A (1996) Cyclic voltammetry at gold single-crystal surfaces. 1. Behaviour at low-index faces. J Electroanal Chem 407:1–2CrossRefGoogle Scholar
  7. Huang Y, Wang W, Liang H, Xu H (2009) Surfactant-promoted reductive synthesis of shape-controlled gold nanostructures. Cryst Growth Des 9:858–862. doi:10.1021/cg800500c CrossRefGoogle Scholar
  8. Jena BK, Raj CR (2007) Shape-controlled synthesis of gold nanoprism and nanoperiwinkles with pronounced electrocatalytic activity. J Phys Chem C 111:15146–15153. doi:10.1021/jp072363s CrossRefGoogle Scholar
  9. Jeong GH, Kim M, Lee YW, Choi W, Oh WT, Park QH, Han SW (2009) Polyhedral Au nanocrystals exclusively bound by 110 facets: the rhombic dodecahedron. J Am Chem Soc 131:1672–1673. doi:10.1021/ja809112n CrossRefGoogle Scholar
  10. Kim F, Connor S, Song H, Kuykendall T, Yang P (2004) Platonic gold nanocrystals. Angew Chem Int Ed 43:3673–3677. doi:10.1002/anie.200454216 CrossRefGoogle Scholar
  11. Kumar C (2009) Metallic nanomaterials. Wiley, WeinheimGoogle Scholar
  12. Li C, Cai W, Cao B, Sun F, Li Y, Kan C, Zhang L (2006) Mass synthesis of large, single-crystal Au nanosheets based on a polyol process. Adv Funct Mater 16:83–90. doi:10.1002/adfm.200500209 CrossRefGoogle Scholar
  13. Li C, Shuford KL, Park QH, Cai W, Li YE, Lee J, Cho SO (2007) High-yield synthesis of single-crystalline gold nano-octahedra. Angew Chem Int Ed 46:3264–3269. doi:10.1002/anie.200604167 CrossRefGoogle Scholar
  14. Li C, Shuford KL, Chen M, Lee EJ, Cho SO (2008a) A facile polyol route to uniform gold octahedra with tailorable size and their optical properties. ACS Nano 2:1760–1769. doi:10.1021/nn800264q CrossRefGoogle Scholar
  15. Li Z, Li W, Camargo PHC, Xia Y (2008b) Facile synthesis of branched Au nanostructures by templating against a self-destructive lattice of magnetic Fe nanoparticles. Angew Chem Int Ed 47:9653–9656. doi:10.1002/anie.200804634 CrossRefGoogle Scholar
  16. Liu X, Wu N, Wunsch BH, Barsotti RJ Jr, Stellacci F (2006) Shape-controlled growth of micrometer-sized gold crystals by a slow reduction method. Small 2:1046–1050. doi:10.1002/smll.200600219 CrossRefGoogle Scholar
  17. Luo J, Maye MM, Lou Y, Han L, Hepel M, Zhong CJ (2002) Catalytic activation of core-shell assembled gold nanoparticles as catalyst for methanol electrooxidation. Catal Today 77:127–138CrossRefGoogle Scholar
  18. Ma Y, Kuang Q, Jiang Z, Xie Z, Huang R, Zheng L (2008) Synthesis of trisoctahedral gold nanocrystals with exposed high-index facets by a facile chemical method. Angew Chem Int Ed 47:8901–8904. doi:10.1002/anie.200802750 CrossRefGoogle Scholar
  19. Millstone JE, Metraux GS, Mirkin CA (2006) Controlling the edge length of gold nanoprisms via a seed-mediated approach. Adv Funct Mater 16:1209–1214. doi:10.1002/adfm.200600066 CrossRefGoogle Scholar
  20. Narayanan R, El-Sayed MA (2005) Catalysis with transition metal nanoparticles in colloidal solution: nanoparticle shape dependence and stability. J Phys Chem B 109:12663–12676. doi:10.1021/jp051066p CrossRefGoogle Scholar
  21. Niu W, Zheng S, Wang D, Liu X, Li H, Han S, Chen J, Tang Z, Xu G (2009) Selective synthesis of single-crystalline rhombic dodecahedral, octahedral, and cubic gold nanocrystals. J Am Chem Soc 131:697–703. doi:10.1021/ja804115r CrossRefGoogle Scholar
  22. Rosi NL, Mirkin CA (2005) Nanostructures in biodiagnostics. Chem Rev 105:1547–1562. doi:10.1021/cr030067f CrossRefGoogle Scholar
  23. Sanchez-Iglesias A, Pastoriza-Santos I, Perez-Juste J, Rodriguez-Gonzalez B, Garcia de Abajo FJ, Liz-Marzan LM (2006) Synthesis and optical properties of gold nanodecahedra with size control. Adv Mater 18:2529–2534. doi:10.1002/adma.200600475 CrossRefGoogle Scholar
  24. Sau TK, Murphy CJ (2004) Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution. J Am Chem Soc 126:8648–8649. doi:10.1021/ja047846d CrossRefGoogle Scholar
  25. Seo D, Park JC, Song H (2006) Polyhedral gold nanocrystals with O-h symmetry: from octahedra to cubes. J Am Chem Soc 128:14863–14870. doi:10.1021/ja062892u CrossRefGoogle Scholar
  26. Smith DK, Korgel BA (2008) The importance of the CTAB surfactant on the colloidal seed-mediated synthesis of gold nanorods. Langmuir 24:644–649. doi:10.1021/la703625a CrossRefGoogle Scholar
  27. Tao AR, Habas S, Yang P (2008) Shape control of colloidal metal nanocrystals. Small 4:310–325. doi:10.1002/smll.200701295 CrossRefGoogle Scholar
  28. Templeton AC, Wuelfing WP, Murray RW (2000) Monolayer protected cluster molecules. Acc Chem Res 33:27–36CrossRefGoogle Scholar
  29. Tsuji T, Hashimoto M, Nishizawa Y, Kubokawa M, Tsuji T (2005) Microwave-assisted synthesis of metallic nanostructures in solution. Chem Eur J 11:440–452. doi:10.1002/chem.200400417 CrossRefGoogle Scholar
  30. Wiley B, Sun Y, Mayers B, Xia Y (2005) Shape-controlled synthesis of metal nanostructures: the case of silver. Chem Eur J 11:454–463. doi:10.1002/chem.200400927 CrossRefGoogle Scholar
  31. Xia Y, Xiong Y, Lim B, Skrabalak SE (2009) Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew Chem Int Ed 48:60–103. doi:10.1002/anie.200802248 CrossRefGoogle Scholar
  32. Xu J, Li S, Weng J, Wang X, Zhou Z, Yang K, Liu M, Chen X, Cui Q, Cao M, Zhang Q (2008) Hydrothermal syntheses of gold nanocrystals: from icosahedral to its truncated form. Adv Funct Mater 18:277–284. doi:10.1002/adfm.200700123 CrossRefGoogle Scholar
  33. Zhao N, Wei Y, Sun N, Chen Q, Bai J, Zhou L, Qin Y, Li M, Qi L (2008) Controlled synthesis of gold nanobelts and nanocombs in aqueous mixed surfactant solutions. Langmuir 24:991–998. doi:10.1021/la702848x CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Dawei Wang
    • 1
  • Jianshe Huang
    • 1
  • Yang Liu
    • 1
  • Xinyi Han
    • 1
  • Tianyan You
    • 1
  1. 1.State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied Chemistry, Chinese Academy of SciencesChangchunPeople’s Republic of China

Personalised recommendations