Journal of Nanoparticle Research

, Volume 13, Issue 1, pp 127–138 | Cite as

Microwave-assisted polyol synthesis of Cu nanoparticles

  • M. Blosi
  • S. Albonetti
  • M. Dondi
  • C. Martelli
  • G. Baldi
Research Paper

Abstract

Microwave heating was applied to synthesize copper colloidal nanoparticles by a polyol method that exploits the chelating and reducing power of a polidentate alcohol (diethylenglycol). The synthesis was carried out in the presence of eco-friendly additives such as ascorbic acid (reducing agent) and polyvinylpirrolidone (chelating polymer) to improve the reduction kinetics and sols stability. Prepared suspensions, obtained with very high reaction yield, were stable for months in spite of the high metal concentration. In order to optimize suspensions, synthesis parameters were modified and the effects on particle size, optical properties, and reaction yield were investigated. XRD analysis, scanning transmission electron microscopy (STEM), and DLS measurements confirmed that prepared sols consist of crystalline metallic copper with a diameter ranging from 45 to 130 nm. Surface plasmon resonance (SPR) of Cu nanoparticles was monitored by UV–Vis spectroscopy and showed both a red shift and a band weakening due to nanoparticle diameter increase. Microwave use provides rapid, uniform heating of reagents and solvent, while accelerating the reduction of metal precursors and the nucleation of metal clusters, resulting in monodispersed nanostructures. The proposed microwave-assisted synthesis, also usable in large-scale continuous production, makes process intensification possible.

Keywords

Copper Nanoparticles Colloid Polyol synthesis Microwave 

References

  1. Altincekic TG, Boz I (2008) Influence of synthesis conditions on particle morphology of nanosized Cu/ZnO powder by polyol method. Bull Mater Sci 31:619–624. doi:10.1007/s12034-008-0098-x CrossRefGoogle Scholar
  2. Cha SI, Mo CB, Kim KT, Jeong YJ, Honga SH (2006) Mechanism for controlling the shape of Cu nanocrystals prepared by the polyol process. J Mater Res 21:2371–2378. doi:10.1557/JMR.2006.0285 CrossRefGoogle Scholar
  3. Chakroune N, Viau G, Ricolleau C, Fièvet-Vincent F, Fievet F (2003) Cobalt-based anisotropic particles prepared by the polyol process. J Mater Chem 13:312–318. doi:10.1039/b209383a CrossRefGoogle Scholar
  4. Creighton JA, Eadont DG (1991) Ultraviolet–visible absorption spectra of the colloidal metallic element. J Chem Soc Faraday Trans 87:3881. doi:10.1039/FT9918703881 CrossRefGoogle Scholar
  5. Daungthongsuk W, Wongwises S (2007) A critical review of convective heat transfer of nanofluids. Renew Sustain Energy Rev 11:797–817. doi:10.1016/j.rser.2005.06.005 CrossRefGoogle Scholar
  6. Dotzauer DM, Bhattacharjee S, Wen Y, Bruening ML (2009) Nanoparticle-containing membranes for the catalytic reduction of nitroaromatic compounds. Langmuir 25:1865–1871. doi:10.1021/la803220z CrossRefGoogle Scholar
  7. Feldmann C, Jungk HO (2001) Polyol-mediated preparation of nanoscale oxide particles. Angew Chem Int Ed 40:359–362. doi:10.1002/1521-3773(20010119)40:2<359:AID-ANIE359>3.0.CO;2-B CrossRefGoogle Scholar
  8. Feldmann C, Jungk HO (2002) Preparation of sub-micrometer LnPO4 particles (Ln = La, Ce). J Mater Sci 37:3251–3254. doi:10.1023/A:1016131016637 CrossRefGoogle Scholar
  9. Fievet F (2000) Polyol process. In: Sugimoto T (ed) Fine particles: synthesis, characterization, and mechanism of growth. Surfactant science series, vol 92. M. Dekker, Inc., New York, p 460Google Scholar
  10. Fievet F, Fievet VF, Lagier JP, Dumont B, Figlarz M (1993) Controlled nucleation and growth of micrometre-size copper particles prepared by the polyol process. J Mater Chem 3:627–632. doi:10.1039/JM9930300627 CrossRefGoogle Scholar
  11. Gritaonandia JS et al (2008) Chemically induced permanent magnetism in Au, Ag, and Cu nanoparticles: localization of the magnetism by element selective techniques. Nano Lett 8:661–667. doi:10.1021/nl073129g CrossRefGoogle Scholar
  12. Hammarberg E, Prodi Shwab A, Feldmann C (2009) Microwave-assisted polyol synthesis of aluminium- and indium-doped ZnO nanocrystals. J Colloid Interface Sci 334:29–36. doi:10.1016/j.jcis.2009.03.010 CrossRefGoogle Scholar
  13. Haq S, Raval R (2007) NO and dichloroethene reactivity on single crystal and supported Cu nanoparticles: just how big is the materials gap? Phys Chem Chem Phys 9:3641–3647. doi:10.1039/b702595p CrossRefGoogle Scholar
  14. Huang H et al (1997) Synthesis, characterization and nonlinear optical properties of copper nanoparticles. Langmuir 13:172–175. doi:10.1021/la9605495 CrossRefGoogle Scholar
  15. Hutter E, Fendler JH (2004) Exploitation of localized surface plasmon resonance. Adv Mater 16:1685–1706. doi:10.1002/adma.200400271 CrossRefGoogle Scholar
  16. Khanna PK, More P, Jawalkar J, Patil Y, Rao NK (2009) Synthesis of hydrophilic copper nanoparticles: effect of reaction temperature. J Nanopart Res 11:793–799. doi:10.1007/s11051-008-9441-9 CrossRefGoogle Scholar
  17. Kim YH, Lee DK, Cha HG, Kim CW, Kang YC, Kang YS (2006a) Preparation and characterization of the antibacterial Cu nanoparticle formed on the surface of SiO2 nanoparticles. J Phys Chem B 110:24923–24928. doi:10.1021/jp0656779 CrossRefGoogle Scholar
  18. Kim YH, Lee DK, Jo BG, Jeong JH, Kang YS (2006b) Synthesis of oleate capped Cu nanoparticles by thermal decomposition. Colloid Surf A Physiochem Eng Aspects 284–285:364–368. doi:10.1016/j.colsurfa.2005.10.067 CrossRefGoogle Scholar
  19. Kobayashi Y, Ishida S, Ihara K, Yasuda Y, Morita T, Yamada S (2009) Synthesis of metallic copper nanoparticles coated with polypyrrole. Colloid Polym Sci 287:877–880. doi:10.1007/s00396-009-2047-7 CrossRefGoogle Scholar
  20. Kreibig U, Genzel L (1985) Optical absorption of small metallic particles. Surf Sci 156:678–700. doi:10.1134/1.558284 CrossRefGoogle Scholar
  21. LaMer V, Dinegar R (1950) Theory, production and mechanism of formation of monodispersed hydrosols. J Am Chem Soc 72:4847–4854. doi:10.1021/ja01167a001 CrossRefGoogle Scholar
  22. Lee Y, Choi J, Lee KJ, Stott NE, Kimet D (2008) Large-scale synthesis of copper nanoparticles by chemically controlled reduction for applications of inkjet-printed electronics. Nanotechnology 19:415604. doi:10.1088/0957-4484/19/41/415604 CrossRefGoogle Scholar
  23. Lisiecki I, Pileni MP (1993) Synthesis of copper metallic clusters using reverse micelles as microreactors. J Am Chem Soc 115:3887–3896. doi:10.1021/ja00063a006 CrossRefGoogle Scholar
  24. Lisiecki I, Billoudet F, Pileni MP (1996) Control of the shape and the size of copper metallic particles. J Phys Chem 100:4160–4166. doi:10.1021/jp9523837 CrossRefGoogle Scholar
  25. Liu Z, Bando Y (2003) A novel method for preparing copper nanorods and nanowires. Adv Mater 15:303–305. doi:10.1002/adma.200390073 CrossRefGoogle Scholar
  26. Liu MS, Lin MCC, Tsai CY, Wang CC (2006) Enhancement of thermal conductivity with Cu for nanofluids using chemical reduction method. Int J Heat Mass Transf 49:3028–3033. doi:10.1016/j.ijheatmasstransfer.2006.02.012 CrossRefGoogle Scholar
  27. Liu YH, Lo SL, Lin CJ (2007) Size effect in reactivity of copper nanoparticles to carbon tetrachloride degradation. Water Res 41:1705–1712. doi:10.1016/j.watres.2007.01.014 CrossRefGoogle Scholar
  28. Lu X, Rycenga M, Skrabalak SE, Wiley B, Xia Y (2009) Chemical synthesis of novel plasmonic nanoparticles. Annu Rev Phys Chem 60:167–192. doi:10.1146/annurev.physchem.040808.090434 CrossRefGoogle Scholar
  29. Mullaugh KM, Luther GW (2010) Spectroscopic determination of the size of cadmium sulfide nanoparticles. J Environ Monit 12:890–897. doi:10.1039/b919917a CrossRefGoogle Scholar
  30. Murdock RC et al (2008) Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique. Toxicol Sci 101:239–253. doi:10.1093/toxsci/kfm240 CrossRefGoogle Scholar
  31. Nada EA, Masoud Z, Hijazi A (2008) Natural convection heat transfer enhancement in horizontal concentric annuli using nanofluids. Int Commun Heat Mass Tranf 35:657–665. doi:10.1016/j.icheatmasstransfer.2007.11.004 CrossRefGoogle Scholar
  32. Nakamura T, Tsukahara Y, Sakata T, Mori H, Kanbe Y, Bessho H, Wada Y (2007) Preparation of monodispersed Cu nanoparticles by microwave-assisted alcohol reduction. Bull Chem Soc Jpn 80:224–232. doi:10.1246/bcsj.80.224 CrossRefGoogle Scholar
  33. Park BK, Jeong S, Kim D, Moon J, Lim S, Kim JS (2007) Synthesis and size control of monodisperse copper nanoparticles by polyol method. J Colloid Interface Sci 311:417–424. doi:10.1016/j.jcis.2007.03.03 CrossRefGoogle Scholar
  34. Ren X, Chen D, Tang F (2005) Shape-controlled synthesis of copper colloids with a simple chemical route. J Phys Chem B 109:15803–15807. doi:10.1021/jp052374q CrossRefGoogle Scholar
  35. Sarkar A, Mukherjee T, Kapoor SJ (2008) PVP-stabilized copper nanoparticles: a reusable catalyst for “click” reaction between terminal alkynes and azides in nonaqueous solvents. J Phys Chem C 113:3334–3340. doi:10.1021/jp077603i CrossRefGoogle Scholar
  36. Sidorov SN, Bronstein LM, Valetsky PM, Hartmann J, Colfen H, Schnablegger H, Antonietti M (1999) Stabilization of metal nanoparticles in aqueous medium by polyethyleneoxide–polyethyleneimine block copolymers. J Colloid Interface Sci 212:197–211. doi:10.1006/jcis.1998.6035 CrossRefGoogle Scholar
  37. Singh AK, Raykar VS (2008) Microwave synthesis of silver nanofluids with polyvinylpyrrolidone (PVP) and their transport properties. Colloid Polym Sci 286:1667–1673. doi:10.1007/s00396-008-1932-9 CrossRefGoogle Scholar
  38. Slistan-Grijalvaa A, Herrera-Urbina R, Rivas-Silva JF, Valos-Borja MA, Castillon-Barraza FF, Posada-Amarillas A (2005) Classical theoretical characterization of the surface plasmon absorption band for silver spherical nanoparticles suspended in water and ethylene glycol. Physica E 27:104–112. doi:10.1016/j.physe.2004.10.014 CrossRefGoogle Scholar
  39. Son SU, Park IK, Park J, Hyeon T (2004) Synthesis of Cu2O coated Cu nanoparticles and their successful applications to Ullmann-type amination coupling reactions of aryl chlorides. Chem Commun 7:778–779. doi:10.1039/b316147a CrossRefGoogle Scholar
  40. Sun J, Jing Y, Jia Y, Tillard M, Belin C (2005) Mechanism of preparing ultrafine copper powder by polyol process. Mater Lett 59:3933–3936. doi:10.1016/j.matlet.2005.07.036 CrossRefGoogle Scholar
  41. Tanabe K (2007) Optical radiation efficiencies of metal nanoparticles for optoelectronic applications. Mater Lett 61:4573–4575. doi:10.1016/j.matlet.2007.02.053 CrossRefGoogle Scholar
  42. Tso C, Zhung C, Shih Y, Tseng YM, Wu S, Doonget R (2010) Stability of metal oxide nanoparticles in aqueous solutions. Water Sci Technol 61:127–133. doi:10.1016/j.watres.2007.11.036 CrossRefGoogle Scholar
  43. Viau G, Toneguzzo P, Perrard A, Acher O, Fièvet-Vincent F, Fievet F (2001) Heterogeneous nucleation and growth of metal nanoparticles in polyols. Scr Mater 44:2263–2267. doi:10.1016/S1359-6462(01)00752-7 CrossRefGoogle Scholar
  44. Wang Y, Chen P, Liu M (2006) Synthesis of well-defined copper nanocubes by a one-pot solution process. Nanotechnology 17:6000–6006. doi:10.1088/0957-4484/17/24/016 CrossRefGoogle Scholar
  45. Wu SH, Chen DH (2004) Synthesis of high-concentration Cu nanoparticles in aqueous CTAB solutions. J Colloid Interface Sci 273:165–169. doi:10.1016/j.jcis.2004.01.071 CrossRefGoogle Scholar
  46. Wu C, Mosher BP, Zeng T (2006) One-step green route to narrowly dispersed copper nanocrystals. J Nanopart Res 8:965–969. doi:10.1007/s11051-005-9065-2 CrossRefGoogle Scholar
  47. Yang J, Okamoto T, Ichino R, Bessho T, Satake S, Okido M (2006) A simple way for preparing antioxidation nano-copper powders. Chem Lett 35:648–649. doi:10.1246/cl.2006.648 CrossRefGoogle Scholar
  48. Yeh MS, Yang YS, Lee YP, Lee HF, Yeh YH, Yeh CS (1999) Formation and characteristics of Cu colloids from CuO powder by laser Irradiation in 2-propanol. J Phys Chem B 103:6851–6857. doi:10.1021/jp984163+ CrossRefGoogle Scholar
  49. Yu W, France DM, Routbort JL, Choi US (2008) Review and comparison of nanofluid thermal conductivity and heat transfer enhancements. Heat Transf Eng 29:432–460. doi:10.1080/01457630701850851 CrossRefGoogle Scholar
  50. Zhao Y, Zhu JJ, Hong JM, Bian N, Chen HY (2004) Microwave-induced polyol-process synthesis of copper and copper oxide nanocrystals with controllable morphology. Eur J Inorg Chem 2004:4072–4080. doi:10.1002/ejic.200400258 CrossRefGoogle Scholar
  51. Zheng J, Nicovich PR, Dickson RM (2007) Highly fluorescent noble-metal quantum dots. Annu Rev Phys Chem 58:409–431. doi:10.1146/annurev.physchem.58.032806.104546 CrossRefGoogle Scholar
  52. Zhu J, Li K, Chen H, Yang X, Lu L, Wang X (2004a) Highly dispersed CuO nanoparticles prepared by a novel quick-precipitation method. Mater Lett 58:3324–3327. doi:10.1016/j.matlet.2004.06.031 CrossRefGoogle Scholar
  53. Zhu HT, Zhang C, Yin Y (2004b) Rapid synthesis of copper nanoparticles by sodium hypophosphite reduction in ethylene glycol under microwave irradiation. J Cryst Growth 270:722–728. doi:10.1016/j.jcrysgro.2004.07.008 CrossRefGoogle Scholar
  54. Zhu H, Zhang C, Yin Y (2005) Novel synthesis of copper nanoparticles: influence of the synthesis conditions on the particle size. Nanotechnology 16:3079–3083. doi:10.1088/0957-4484/16/12/059 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • M. Blosi
    • 1
  • S. Albonetti
    • 2
  • M. Dondi
    • 1
  • C. Martelli
    • 3
  • G. Baldi
    • 4
  1. 1.ISTEC-CNR, Institute of Science and Technology for CeramicsCNR, National Research CouncilFaenzaItaly
  2. 2.Department of Industrial Chemistry and Materials, INSTM, Research Unit of BolognaUniversity of BolognaBolognaItaly
  3. 3.Department of Industrial Chemistry and MaterialsUniversity of BolognaBolognaItaly
  4. 4.CERICOL, Colorobbia ResearchSovigliana VinciItaly

Personalised recommendations