Skip to main content

Occupational exposure limits for nanomaterials: state of the art

Abstract

Assessing the need for and effectiveness of controlling airborne exposures to engineered nanomaterials in the workplace is difficult in the absence of occupational exposure limits (OELs). At present, there are practically no OELs specific to nanomaterials that have been adopted or promulgated by authoritative standards and guidance organizations. The vast heterogeneity of nanomaterials limits the number of specific OELs that are likely to be developed in the near future, but OELs could be developed more expeditiously for nanomaterials by applying dose–response data generated from animal studies for specific nanoparticles across categories of nanomaterials with similar properties and modes of action. This article reviews the history, context, and approaches for developing OELs for particles in general and nanoparticles in particular. Examples of approaches for developing OELs for titanium dioxide and carbon nanotubes are presented and interim OELs from various organizations for some nanomaterials are discussed. When adequate dose–response data are available in animals or humans, quantitative risk assessment methods can provide estimates of adverse health risk of nanomaterials in workers and, in conjunction with workplace exposure and control data, provide a basis for determining appropriate exposure limits. In the absence of adequate quantitative data, qualitative approaches to hazard assessment, exposure control, and safe work practices are prudent measures to reduce hazards in workers.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  • ABPI, Association of the British Pharmaceutical Industry (1995), London, UK

  • ACGIH (1984) Particle size-selective sampling in the workplace, Report on the ACGIH Technical Committee on Air Sampling Procedures. Ann Am Conf Gov Ind Hyg 11:23–100

    Google Scholar 

  • ACGIH (2001) Particulates (insoluble) not otherwise specific (PNOS). In: Documentation of the threshold limit values for chemical substances, 7th ed. American Conference of Governmental Industrial Hygienists, Cincinnati, OH

  • ACGIH (2009) TLVs® AND BEIs® based on the documentation of the threshold limit values for chemical substances and physical agents and biological exposure indices. American Conference of Governmental Industrial Hygienists, Cincinnati, OH

  • Akiyama I, Ogami A, Oyabu T, Yamato H, Morimoto Y, Tanaka I (2007) Pulmonary effects and biopersistence of deposited silicon carbide whisker after 1-year inhalation in rats. Inhal Toxicol 19:141–147

    Article  CAS  PubMed  Google Scholar 

  • Baron PA (2001) Measurement of airborne fibers: a review. Ind Health 39:39–50

    Article  CAS  PubMed  Google Scholar 

  • BAuA (2008a) Tonerstäube am Arbeitsplatz (in German only). http://www.baua.de/nn_11598/de/Publikationen/Fachbeitraege/artikel17,xv=vt.pdf). Accessed 7 Oct 2009

  • BAuA (2008b) Risk figures and exposure-risk relationships in activities involving carcinogenic hazardous substances. http://www.baua.de/nn_79754/en/Topics-from-A-to-Z/Hazardous-Substances/TRGS/pdf/Announcement-910.pdf?. Accessed 7 Oct 2009

  • BAuA (2008c) Begründung zur Exposition-Risiko-Beziehung für Asbest in Bekanntmachung zu Gefahrstoffen 910 (in German only). http://www.baua.de/nn_79040/de/Themen-von-A-Z/Gefahrstoffe/TRGS/pdf/910/910-asbest.pdf. Accessed 7 Oct 2009

  • BAuA (2009) Ausschuss für Gefahrstoffe, Technische Regeln für Gefahrstoffe 900 (TRGS 900) Arbeitsplatzgrenzwerte. www.baua.de/de/Themen-von-A-Z/Gefahrstoffe/TRGS/TRGS-900.html. Accessed 26 June 2009

  • Bayer MaterialScience (2010). Occupational Exposure Limit (OEL) for Baytubes defined by Bayer MaterialScience. http://www.baytubes.com/news_and_services/news_091126_oel.html. Accessed 15 Jan 2010

  • Brandys RC, Brandys Gm (2008) Global occupational exposure limits for over 6,000 specific chemicals. OEHCS Inc. Hinsdale, IL 60521

  • BSI (2007) Guide to Safe Handling and Disposal of Manufactured Nanomaterials. BSI PD6699-2

  • CEN (1993) Workplace atmospheres—size fraction determination for measurement of airborne particles. CEN EN 481. CEN, Brussels

    Google Scholar 

  • CIIT and RIVM (2002) Multiple-path paticle deposition: a model for human and rat airway particle dosimetry, v. 1.0. CIIT, Research Triangle Park, NC; National Insitute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands

  • Cook WA (1945) Maximum allowable concentrations of industrial contaminants. Ind Med 14:936–946

    CAS  Google Scholar 

  • Cook WA (1987) Occupational exposure limits—worldwide. American Industrial Hygiene Association, Akron

    Google Scholar 

  • Crump KS (1984) A new method for determining allowable daily intakes. Fund Appl Toxicol 4(5):854–871

    Article  CAS  Google Scholar 

  • Dankovic D, Kuempel E, Wheeler M (2007) An approach to risk assessment for titanium dioxide. Inhal Toxicol 19(Suppl 1):205–212

    Article  CAS  PubMed  Google Scholar 

  • Dressen WC, Dallavale JM, Edwards JI, Miller JW, Sayers RR (1938). A study of asbestosis in the asbestos textile industry. Public Health Bulletin No. 241

  • Drew R, Frangos J, Hagen T (2009) Engineered nanomaterials: a review of the toxicology and health hazards. Safe Work Australia, Barton ACT

    Google Scholar 

  • Eherts D (2004) Control banding from the pharma perspective: staying ahead of the regulations. http://www.schc.org/schcnewslite/events/s004fall/present/Dave_Eherts_ControlBanding.pdf. Accessed 9 Dec 2009

  • Galer DM, Leung HW, Sussman G, Trzos RJ (1992) Scientific and practical considerations for the development of occupational exposure limits (OELs) for chemical substances. Reg Toxicol Pharmacol 15:291–306

    Article  CAS  Google Scholar 

  • Greim H, Zeigler-Skylakakis K (1997) Strategies for setting occupational exposure limits for particles. Environ Health Perspect 105(Suppl 5):1357–1361

    Article  PubMed  Google Scholar 

  • Gruber M (1883) Über den Nachweis und die Gifigkeit des Kohlenoxyds und sein Vorkommeu in Wohnrăumen. Arch Hyg 1:145–168

    Google Scholar 

  • Hansen SF, Larsen BH, Olsen SI et al (2007) Categorization framework to aid hazard identification of nanomaterials. Nanotoxicology 1:243–250

    Article  CAS  Google Scholar 

  • Heinrich U, Fuhst R, Rittinghausen S, Creutzenberg O, Bellmann B, Koch W, Levsen K (1995) Chronic inhalation exposure of Wistar rats and 2 different strains of mice to diesel-engine exhaust, carbon-black, and titanium-dioxide. Inhal Toxicol 7(4):466–533

    Google Scholar 

  • Higgins E et al (1917) Siliceous Dust in Relation to Pulmonary Diseases among Miners in the Joplin District, Missouri. Bulletin 132. U.S.Dept. of Interior. Bureau of Mines, Washington, DC

    Google Scholar 

  • Howard J, Murashov V (2009) National nanotechnology partnership to protect workers. J Nanopart Res 11(7):1673–1683

    Article  Google Scholar 

  • Hubbs AF, Mercer RR, Coad JE, Battelli LA, Willard P, Sriram K, Wolfarth M, Castranova V, Porter D (2009) Persistent pulmonary inflammation, airway mucous metaplasia and migration of multi-walled carbon nanotubes from the lung after subchronic exposure. Toxicol 108:A2193

    Google Scholar 

  • ICRP (1994) Human respiratory tract model for radiological protection. In: Smith H (ed) Annals of the ICRP, ICRP Publication No. 66. International Commission on Radiological Protection, Tarrytown, New York

    Google Scholar 

  • IFA (2009) Criteria for assessment of the effectiveness of protective measures. http://www.dguv.de/ifa/en/fac/nanopartikel/beurteilungsmassstaebe/index.jsp. Accessed 7 Oct 2009

  • Illing HP (1991) Extrapolating from toxicity data to some occupational exposure limits: some considerations. Ann Occup Hyg 35:569–580

    Article  CAS  PubMed  Google Scholar 

  • ISO (1995) Air Quality- Particle size fraction definitions for health-related sampling, ISO 7708: 1995. International Organization for Standardization, Geneva, Switzerland

  • ISO (2007) Workplace atmospheres—ultrafine nanoparticle and nano-structured aerosols—inhalation, exposure characterization and assessment. Document No. ISO/TR 27628:2007. International Organization for Standardization, Geneva

    Google Scholar 

  • ISO (2009) ISO/TC 229 Nanotechnologies Working Group 3–Health, Safety and the Environment, Project Group 6, “Guide to safe handling and disposal of manufactured nanomaterials”, Draft Report, 9 June 2009, Seattle, Washington, U.S.A. NANO TC229 WG 3/PG 6 012–2009. International Organization for Standardization, Geneva

    Google Scholar 

  • Jackson N, Lopata A, Elms T, Wright P (2009) Engineered nanomaterials: evidence on the effectiveness of workplace controls to prevent exposures. Safe Work Australia, Barton ACT

    Google Scholar 

  • Jaurand MCF, Renier A, Daubriac J (2009) Mesothelioma: do asbestos and carbon nanotubes pose the same health risk? Part Fibre Toxicol 6:16–29

    Article  PubMed  Google Scholar 

  • Johnson NF, Hoover MD, Thomassen DG, Cheng YS, Balley A, Brooks Al (1992) In vitro activity of silicon carbide whiskers in comparison to other industrial fibers using four cell culture systems. Am J Ind Med 21(6):807–823

    Article  CAS  PubMed  Google Scholar 

  • Kamrin MA (1988) Toxicology. Lewis Publishing, Chelsea, p 82

    Google Scholar 

  • Karlsson HL, Cronholm P, Gustafsson J, Moller L (2008) Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chem Res Toxicol 21(9):1726–1732

    Article  CAS  PubMed  Google Scholar 

  • Kisin ER, Murray AR, Keane MJ, Shi XC, Schwegler-Berry D, Gorelik O (2007) Single-walled carbon nanotubes: geno- and cytotoxic effects in lung fibroblast V79cells. J Toxicol Environ Health A 70(24):2071–2079

    Article  CAS  PubMed  Google Scholar 

  • Ku RH (2000) An overview of setting occupational exposure limits (OELs) for pharmaceuticals. Chemical Health Saf January/February:34–47

  • Kuempel ED, Tran CL, Castranova V, Bailer AJ (2006) Lung dosimetry and risk assessment of nanoparticles: evaluating and extending current models in rats and humans. Inhal Toxicol 18:717–724

    Article  CAS  PubMed  Google Scholar 

  • Kuempel ED, Geraci CL, Schulte PA (2007) Risk assessment approaches and research needs for nanoparticles: an examination of data and information from current studies. In: Simeonova PP, Opopol N, Luster MI (eds) Nanotechnology—toxicological issues and environmental safety. Springer, New York, pp 119–145

    Chapter  Google Scholar 

  • Lee KP, Trochimowicz HJ, Reinhardt CF (1985) Pulmonary response of rats exposed to titanium dioxide (TiO2) by inhalation for two years. Toxicol Appl Pharmacol 79:179–192

    Article  CAS  PubMed  Google Scholar 

  • Lehman KB, Flury F (1938) Toxikologie und hygiene der technischen losungsmittel. Julius Springer, Berlin

    Google Scholar 

  • Ma-Hock I, Treumann S, Strauss V, Brill S, Luizi I, Martiee M, Wiench K et al (2009) Inhalation of multiwall carbon nanotubes in rats exposed for 3 months. Toxicol Sci 112(2):468–481

    Article  Google Scholar 

  • Maynard A (2007) Nanotechnology: the next big thing or much ado about nothing. Ann Occup Hyg 51:1–12

    Article  CAS  PubMed  Google Scholar 

  • Maynard AD, Kuempel ED (2005) Airborne nanostructured particles and occupational health. J Nanopart Res 7(6):587–614

    Article  CAS  Google Scholar 

  • McGarity TO (1992) Some thoughts on “deossifying” the rulemaking process. Duke Law J 41:1385–1462

    Article  Google Scholar 

  • McHattie GV, Rackham M, Teasdale EL (1988) The derivation of occupational exposure limits in the pharmaceutical-industry. J Soc Occup Med 38(4):105–108

    Article  CAS  PubMed  Google Scholar 

  • Merchant JA (1990) Human epidemiology: a review of fiber types and characteristics in the development of malignant and nonmalignant disease. Environ Health Perspect 88:287–293

    Article  CAS  PubMed  Google Scholar 

  • Muller J, Decordier I, Hoet PH, Lombaert N, Thomassen L, Hauax F, Lison D, Kirsch-Volders M (2008a) Clastogenic and aneugenic effects of multi-wall carbon nanotubes in epithelial cells. Carcinogenesis 29(2):427–433

    Article  CAS  PubMed  Google Scholar 

  • Muller J, Hauax F, Fonseca A, Nagy JB, Moreau N, Delos M (2008b) Structural defects play a major role in the acute lung toxicity of multiwall carbon nanotubes: toxicological aspects. Chem Res Toxicol 21:1698–1705

    Article  CAS  PubMed  Google Scholar 

  • Muller J, Delos M, Panin N, Rabolli V, Huaux F, Lison D (2009) Absence of carcinogenic response to multiwall carbon nanotubes in 2-year bioassay in the periotoneal cavity of the rat. Toxicol Sci 110(2):442–448

    Article  CAS  PubMed  Google Scholar 

  • Nanocyl (2009) Responsible Care and Nanomaterials Case Study Nanocyl. Presentation at European Responsible Care Conference, Prague 21–23rd October, 2009. http://www.cefic.be/Files/Downloads/04_Nanocyl.pdf. Accessed 23 April 2010

  • National Research Council (2008) Science and decisions: advancing risk assessment. National Research Council of the National Academies, Washington, DC

    Google Scholar 

  • Naumann BD, Sargent EV, Starkman BS, Fraser WJ, Becker GT, Kirk GD (1996) Performance-based exposure control limits for pharmaceutically active ingredients. Am Ind Hyg Assoc J 57:33–42

    CAS  PubMed  Google Scholar 

  • Nel AE, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311(5761):622–627

    Article  CAS  PubMed  ADS  Google Scholar 

  • NIOSH (1994) In: Schlecht PC, O’Conner PF (eds) NIOSH manual of analytical methods (NMAM®), 4th ed. DHHS (NIOSH) Publication No. 1994-113. U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Cincinnati, OH. (http://www.cdc.gov/niosh/nmam/). Accessed 7 Oct 2009

  • NIOSH (2005) NIOSH Current Intelligence Bulletin: Evaluation of Health Hazard and Recommendations for Occupational Exposure to Titanium dioxide. Unpublished Public Review Draft. November 22, 2005. U.S. Department of Health and Human Services, Public Health Service Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Cincinnati, OH. http://www.cdc.gov/niosh/docs/preprint/tio2/pdfs/TIO2Draft.pdf

  • NIOSH (2009a) Approaches to Safe Nanotechnology: Managing the Health and Safety Concerns with Engineered Nanomaterials.: U.S. DHHS (NIOSH) Publication No. 2009-125. Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Cincinnati, OH

  • NIOSH (2009b) Qualitative Risk Characterization and Management of Occupational Hazards: Control Banding (CB). A literature review and critical analysis. Publication No. 2009-152. U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, DHHS (NIOSH), Cincinnati, OH

  • Oberdörster G, Stone V, Donaldson K (2007) Toxicology of nanoparticles: a historical perspective. Nanotoxicology 1(1):2–25

    Article  Google Scholar 

  • Occupational Safety and Health Act of 1970, 29 USC § 667:2000

  • Organization for Economic Co-operation and Development (2008) Working Party on Manufactured Nanomaterials: List of Manufactured Nanomaterials and List of Endpoints for Phase One of the OECD Testing Programme (ENV/JM/MONO(2008)13/REV). http://www.olis.oecd.org/olis/2008doc.nsf/LinkTo/NT000034C6/$FILE/JT03248749.PDFDate. Accessed 18 Nov 2009

  • Organization for Economic Co-operation and Development (2009) Report of an OECD Workshop on Exposure Assessment and Exposure Mitigation: Manufactured Nanomaterials, ENV/JM/MONO(2009)18. https://www.oecd.org/dataoecd/15/25/43290538.pdf. Accessed 7 Oct 2009

  • Paik SY, Zalk DM, Swuste P (2008) Application of a pilot control banding tool for risk level assessment and control of nanoparticle exposures. Ann Occup Hyg 52:419–428

    Article  CAS  PubMed  Google Scholar 

  • Park RM, Stayner LT (2006) A search for thresholds and other nonlinearities in the relationship between hexavalent chromium and lung cancer. Risk Anal 26(1):79–88

    Article  PubMed  Google Scholar 

  • Paul JM (1989) The origin and basis of threshold limit values. Am J Ind Medicine 5:227–238

    Article  Google Scholar 

  • Pauluhn J (2010a) Subchronic 13-week inhalation exposure to rats to multiwalled carbon nanotubes: toxic effects are determined by density of agglomerate structures, not fibrillar structures. Toxicol Sci 113(1):226–242

    Article  CAS  PubMed  Google Scholar 

  • Pauluhn J (2010b) Multi-walled carbon nanotubes (Baytubes): approach for derivation of occupational exposure limit. Regul Toxicol Pharmacol. doi:10.1016/j.vrtph.2009.12.012

  • Paustenbach DJ (1998) Occupational exposure limits. In: Stellman J (ed) Encyclopedia of occupational health and safety. International Labour Office, Geneva, pp 30.27–30.34

    Google Scholar 

  • Paustenbach DJ, Langner RR (1986) Setting corporate exposure limits: state of the art. Am Ind Hyg Assoc J 47:809–818

    Google Scholar 

  • Piegorsch WW, Bailer AJ (2005) Quantitative risk assessment with stimulus-response data. In: Analyzing environmental data. Wiley, Chichester, West Sussex, UK, pp 171–214

  • Poland CA, Duffin R, Kinloch I, Maynard A, Wallace WAH, Seaton A, Stone V, Brown S, MacNee W, Donaldson K (2008) Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol 3(7):423–428

    Article  CAS  PubMed  Google Scholar 

  • Porter DW, Hubbs AF, Mercer RR, Nianqiang Wu, Wolfarth MG, Sriram K, Leonard SS, Batelli L, Schwegler-Gerry D, Friend S, Andrew M, Chen BT, Tsuruoka S, Endo M, Castranova V (2009) Mouse pulmonary dose-and time course-response induced by exposure to multi-walled carbon nanotubes. Toxicology 269:136–147

    Article  PubMed  Google Scholar 

  • Ryman-Rasmussen JP et al (2009) Inhaled carbon nanotubes reach the subpleural tissue in mice. Nat Nanotechnol. doi:10.1038/NNANO.2009.305

  • Sargent EV, Kirk GD (1988) Establishing airborne exposure control limits in the pharmaceutical industry. Am Ind Hyg Assoc J 4996:309–313

    Google Scholar 

  • Sargent LM, Shvedova AA, Hubbs AF, Salisbury JL, Benkovic SA, Kashon ML, Lowry DT, Murray AR, Kisin ER, Friend S, McKinstry KT, Battelli L, Reynolds SH (2009) Induction of aneuploidy by single-walled carbon nanotubes. Environ Mol Mutagen 50(8):708–717. doi:10:1002/em.25029

    Article  CAS  PubMed  Google Scholar 

  • Sayers RR(1927) Toxicology of gases and vapors. In: International critical tables of numerical data, physics, chemistry, and toxicology, vol 2. McGraw-Hill, New York, pp 318–321

  • Schulte P, Geraci C, Zumwalde R, Hoover M, Kuempel E (2008) Occupational risk management of engineered nanoparticles. J Occup Environ Med 5:239–249

    CAS  Google Scholar 

  • Schulte PA, Schubauer-Berigan MK, Mayweather C, Geraci CL, Zumwalde R, McKernan JL (2009) Issues in the development of epidemiological studies of workers exposed to engineered nanoparticles. J Occup Environ Health 51:323–335

    Article  Google Scholar 

  • Seaton A, Tran L, Aitken R, Donaldson K (2009) Nanoparticles, human health hazard and regulation. J R Soc Interface. doi:10.1098/rsif.2009.0252focus

  • Selcuk ZT, Coplu L, Emri S, Kalyoncu AF, Sahin AA, Baris YI (1992) Malignant pleural mesothelioma due to environmental mineral fiber exposure in Turkey—analysis of 135 cases. Chest 102(3):790–796

    Article  CAS  PubMed  Google Scholar 

  • Shvedova AA, Kisin ER, Mercer R, Murray AR, Johnson VJ, Potapovich AI, Tyurina YY, Gorelik O, Arepalli S, Schwegler-Berry D (2005) Unusual inflammatory and fibrogenic pulmonary responses to single walled carbon nanotubes in mice. Am J Phys Lung Cell Mol Phys 289(5):L698–L708

    Article  CAS  Google Scholar 

  • Shvedova AA et al (2008) Inhalation vs. aspiration of single walled carbon nanotubes in C57BL/6 mice: inflammation, fibrosis, oxidative stress and mutagenesis. Am J Physiol Lung Cell Mol Physiol 295(4):L552–L565

    Article  CAS  PubMed  Google Scholar 

  • Shvedova AA, Kisin ER, Porter D, Schulte P, Kagan VE, Fadeel B, Castranova V (2009) Mechanisms of pulmonary toxicity and medical applications of carbon nanotubes: two faces of Janus. Pharmacol Ther 121:192–204

    Article  CAS  PubMed  Google Scholar 

  • Takagi A, Hirose A, Nishimura T, Fukumori N, Ogata A, Ohashi N, Kitajima S, Kanno J (2008) Induction of mesothelioma in p53± mouse by intraperitoneal application of multiwall carbon nanotubes. J Toxicol Sci 33:105–116

    Article  CAS  PubMed  Google Scholar 

  • Tran CL, Cullen RT, Buchanan D, Jones AD, Miller BG, Searl A, Davis JMG, Donaldson K (1999) Litigation and prediction of pulmonary responses to dust. Part II. In: Investigations into the Pulmonary Effects of Low Toxicity Dusts. Parts I and II. Contract Research Report 216/1999. Health and Safety Executive, Suffolk

    Google Scholar 

  • Travis CC, White RK, Ward RC (1990) Interspecies extrapolation of pharmacokinetics. J Theor Biol 142:285–304

    Article  CAS  PubMed  MathSciNet  Google Scholar 

  • U.S. EPA (1996) Benchmark Dose Technical Guidance Document. U.S. Environmental Protection Agency, Risk Assessment Forum, EPA/600/P-96/002A. U.S. Supreme Court (1980). U.S. Environmental Protection Agency, Washington, DC

  • U.S. EPA (2005) Guidelines for Carcinogen Risk Assessment, Risk Assessment Forum, epa/630/P-03/001F. U.S. Environmental Protection Agency, Washington, DC

    Google Scholar 

  • U.S. Supreme Court (1980) Industrial Union Department, AFL-CIO v. American Petroleum Institute et al., Case Nos. 78-911, 78-1036. Supreme Court Register 100:2844–2905

  • van Leeuwen CJ, Vermeire TG (2007) Risk assessment of chemicals: an introduction. Springer, Dordrecht

    Book  Google Scholar 

  • Wheeler MW, Bailer AJ (2007) Properties of model-averaged BMDLs: a study of model averaging in dichotomous response risk estimation. Risk Anal 27(3):659–670

    Article  PubMed  Google Scholar 

  • World Health Organization (1994) Environmental Health Criteria Document No. 170 assessing human health risks of chemicals: derivation of guidance values for health-based exposure limits. World Health Organization, Geneva

    Google Scholar 

  • Zalk DM, Paik SY, Swuste P (2009) Evaluating the control banding nanotool: a qualitative risk assessment method for controlling nanoparticle exposures. J Nanopart Res 11:1685–1704

    Article  CAS  Google Scholar 

  • Zhu L, Chang DW, Dai L, Hong Y (2007) DNA damage induced by multi-walled carbon nanotubes in mouse embryonic stem cells. Nano Lett 7(12):3592–3597

    Article  CAS  PubMed  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank the following for comments on earlier drafts: Frank Mirer, Chris Laszcz-Davis, Larry Gibbs, Mike Jayjock, Bruce Naumann, Bruno Orthen and Andrew Maynard.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Schulte.

Additional information

Disclaimer: The findings and conclusions in this report are those of the authors and do not necessarily represent the views of the National Institute for Occupational Safety and Health.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schulte, P.A., Murashov, V., Zumwalde, R. et al. Occupational exposure limits for nanomaterials: state of the art. J Nanopart Res 12, 1971–1987 (2010). https://doi.org/10.1007/s11051-010-0008-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-010-0008-1

Keywords

  • Nanomaterials
  • Regulation
  • Risk assessment
  • Occupational safety and health
  • Carbon nanotubes
  • Control banding