Journal of Nanoparticle Research

, Volume 13, Issue 1, pp 97–103

Synthesis of ZnS hollow nanoneedles via the nanoscale Kirkendall effect

  • Hongyu Sun
  • Yan Chen
  • Xiaoliang Wang
  • Yanwu Xie
  • Wei Li
  • Xiangyi Zhang
Research Paper


The facile synthesis of one-dimensional II–VI semiconductor hollow nanostructures with sharp tips is of particular interest for their applications in novel nanodevices. In this study, by employing ZnO nanoneedles with lower symmetry structures as self-sacrificed templates, ZnS hollow nanoneedles with homogeneous thickness have been synthesized by a low temperature hydrothermal route through in situ chemical conversion manner and the nanoscale Kirkendall effect. The hollow needlelike structures obtained in the present study can be used as starting materials to create fantastic nanoarchitectures and may have important applications in optoelectronic nanodevices.


Hollow nanostructures Nanoneedles Kirkendall effect II–VI semiconductor 


  1. Bae C, Yoo H, Kim S, Lee K, Kim J, Sung MM, Shin H (2008) Template-directed synthesis of oxide nanotubes: fabrication, characterization, and applications. Chem Mater 20:756–767CrossRefGoogle Scholar
  2. Bhargava RN, Gallagher D, Hong X, Nurmikko D (1994) Optical properties of manganese-doped nanocrystals of ZnS. Phys Rev Lett 72:416–419CrossRefGoogle Scholar
  3. Bidault S, de Abajo FJG, Polman A (2008) Plasmon-based nanolenses assembled on a well-defined DNA template. J Am Chem Soc 130:2750–2751CrossRefGoogle Scholar
  4. Cabot A, Smith RK, Yin YD, Zheng HM, Reinhard BM, Liu HT, Alivisatos AP (2008) Sulfidation of cadmium at the nanoscale. ACS Nano 2:1452–1458CrossRefGoogle Scholar
  5. Cabot A, Ibáñez M, Guardia P, Alivisatos AP (2009) Reaction regimes on the synthesis of hollow particles by the Kirkendall effect. J Am Chem Soc 131:11326–11328CrossRefGoogle Scholar
  6. Chen JJ, Yu MH, Zhou WL, Sun K, Wang LM (2005) Room-temperature ferromagnetic Co-doped ZnO nanoneedle array prepared by pulsed laser deposition. Appl Phys Lett 87:173119/1-3Google Scholar
  7. Chen JT, Zhang MF, Russell TP (2007) Instabilities in nanoporous media. Nano Lett 7:183–187CrossRefGoogle Scholar
  8. Fan HJ, Knez M, Scholz R, Nielsch K, Pippel E, Hesse D, Zacharias M, Gösele U (2006) Monocrystalline spinel nanotube fabrication based on the Kirkendall effect. Nat Mater 5:627–631CrossRefGoogle Scholar
  9. Fan HJ, Gösele U, Zacharias M (2007) Formation of nanotubes and hollow nanoparticles based on Kirkendall and diffusion processes: a review. Small 3:1660–1671CrossRefGoogle Scholar
  10. Fang XS, Ye CH, Zhang LD, Wang YH, Wu YC (2005) Temperature-controlled catalytic growth of ZnS nanostructures by the evaporation of ZnS nanopowders. Adv Funct Mater 15:63–68CrossRefGoogle Scholar
  11. Fang XS, Gautam UK, Bando Y, Dierre B, Sekiguchi T, Golberg D (2008) Multiangular branched ZnS nanostructures with needle-shaped tips: potential luminescent and field-emitter nanomaterial. J Phys Chem C 112:4735–4742CrossRefGoogle Scholar
  12. Hermans JJ (1947) Diffusion with discontinuous boundary. J Colloid Sci 2:387–398CrossRefGoogle Scholar
  13. Kirkendall E, Thomassen L, Upthegrove C (1939) Rates of diffusion of copper and zinc in alpha brass. Trans AIME 133:186–203Google Scholar
  14. Liang X, Wang X, Zhuang Y, Xu B, Kuang S, Li YD (2008) Formation of CeO2−ZrO2 solid solution nanocages with controllable structures via Kirkendall effect. J Am Chem Soc 130:2736–2737CrossRefGoogle Scholar
  15. Liu B, Zeng HC (2004) Fabrication of ZnO “dandelions” via a modified Kirkendall process. J Am Chem Soc 126:16744–16746CrossRefGoogle Scholar
  16. Moewe M, Chuang LC, Crankshaw S, Chase C, Chang-Hasnain C (2008) Atomically sharp catalyst-free wurtzite GaAs/AlGaAs nanoneedles grown on silicon. Appl Phys Lett 93:023116/1-3Google Scholar
  17. Molares MET, Balogh AG, Cornelius TW, Neumann R, Trautmann C (2004) Fragmentation of nanowires driven by Rayleigh instability. Appl Phys Lett 85:5337–5339CrossRefGoogle Scholar
  18. Monroy E, Omnes F, Calle F (2003) Wide-bandgap semiconductor ultraviolet photodetectors. Semicond Sci Technol 18:R33–R51CrossRefGoogle Scholar
  19. Nakamura R, Lee JG, Mori H, Nakajima H (2008) Oxidation behaviour of Ni nanoparticles and formation process of hollow NiO. Philos Mag 88:257–264CrossRefGoogle Scholar
  20. Nakamura R, Matsubayashi G, Tsuchiya H, Fujimoto S, Nakajima H (2009) Formation of oxide nanotubes via oxidation of Fe, Cu and Ni nanowires and their structural stability: difference in formation and shrinkage behavior of interior pores. Acta Mater 57:5046–5052CrossRefGoogle Scholar
  21. Ohgai T, Hoffer X, Fábián A, Gravier L, Ansermet JP (2003) Electrochemical synthesis and magnetoresistance properties of Ni, Co and Co/Cu nanowires in a nanoporous anodic oxide layer on metallic aluminium. J Mater Chem 13:2530–2534CrossRefGoogle Scholar
  22. Park JW, Zheng HM, Jun YW, Alivisatos AP (2009) Hetero-epitaxial anion exchange yields single-crystalline hollow nanoparticles. J Am Chem Soc 131:13943–13945CrossRefGoogle Scholar
  23. Qin Y, Lee SO, Pan A, Gösele U, Knez M (2008) Rayleigh-instability-induced metal nanoparticle chains encapsulated in nanotubes produced by atomic layer deposition. Nano Lett 8:114–118CrossRefGoogle Scholar
  24. Raidongia K, Rao CNR (2008) Study of the transformations of elemental nanowires to nanotubes of metal oxides and chalcogenides through the Kirkendall effect. J Phys Chem C 112:13366–13371CrossRefGoogle Scholar
  25. Railsback JG, Johnston-Peck AC, Wang JW, Tracy JB (2010) Size-dependent nanoscale Kirkendall effect during the oxidation of nickel nanoparticles. ACS Nano 4:1913–1920CrossRefGoogle Scholar
  26. Sastry M, Swami A, Mandal S, Selvakannan PR (2005) New approaches to the synthesis of anisotropic, core–shell and hollow metal nanostructures. J Mater Chem 15:3161–3174CrossRefGoogle Scholar
  27. Secco EA (1958) Diffusion and exchange of zinc in crystalline zinc sulfide. J Chem Phys 29:406–409CrossRefGoogle Scholar
  28. Shen GZ, Bando Y, Golberg D (2007) Recent developments in single-crystal inorganic nanotubes synthesised from removable templates. Int J Nanotechnol 4:730–749Google Scholar
  29. Shi L, Xu YM, Li Q, Wu ZY, Chen FR, Kai JJ (2007) Single crystalline ZnS nanotubes and their structural degradation under electron beam irradiation. Appl Phys Lett 90:211910/1-3Google Scholar
  30. Son DH, Hughes SM, Yin Y, Alivisatos AP (2004) Cation exchange reactions-in ionic nanocrystals. Science 306:1009–1012CrossRefGoogle Scholar
  31. Wang HQ, Li GH, Jia LC, Wang GZ, Li L (2008) General in situ chemical etching synthesis of ZnO nanotips array. Appl Phys Lett 93:153110/1-3Google Scholar
  32. Wang XD, Zhou J, Lao C, Song J, Xu N, Wang ZL (2006) In situ field emission of density-controlled ZnO nanowire arrays. Adv Mater 19:1627–1631CrossRefGoogle Scholar
  33. Wu XF, Bai H, Li C, Lu G, Shi GQ (2006) Controlled one-step fabrication of highly oriented ZnO nanoneedle/nanorods arrays at near room temperature. Chem Commun 1655–1657Google Scholar
  34. Xiong YJ, Mayers BT, Xia YN (2005) Some recent developments in the chemical synthesis of inorganic nanotubes. Chem Commun 5013–5022Google Scholar
  35. Xiong SL, Xi BJ, Wang CM, Xu DC, Feng XM, Zhu ZC, Qian YT (2007) Tunable synthesis of various wurtzite ZnS architectural structures and their photocatalytic properties. Adv Funct Mater 17:2728–2738CrossRefGoogle Scholar
  36. Yang JL, An SJ, Park WI, Yi GC, Choi WY (2004) Photocatalysis using ZnO thin films and nanoneedles grown by metal-organic chemical vapor deposition. Adv Mater 16:1661–1664CrossRefGoogle Scholar
  37. Yin YD, Rioux RM, Erdonmez CK, Hughes S, Somorjai GA, Alivisatos AP (2004) Formation of hollow nanocrystals through the nanoscale Kirkendall effect. Science 304:711–714CrossRefGoogle Scholar
  38. Yin LW, Bando Y, Zhan JH, Li MS, Golberg D (2005) Self-assembled highly faceted wurtzite-type ZnS single-crystalline nanotubes with hexagonal cross-sections. Adv Mater 17:1972–1977CrossRefGoogle Scholar
  39. Yin YD, Erdonmez CK, Aloni S, Alivisatos AP (2006a) Faceting of nanocrystals during chemical transformation: from solid silver spheres to hollow gold octahedra. J Am Chem Soc 128:12671–12673CrossRefGoogle Scholar
  40. Yin YD, Erdonmez CK, Cabot A, Hughes S, Alivisatos AP (2006b) Colloidal synthesis of hollow cobalt sulfide nanocrystals. Adv Funct Mater 16:1389–1399CrossRefGoogle Scholar
  41. Zhai TY, Gu ZJ, Ma Y, Yang WS, Zhao LY, Yao JN (2006) Synthesis of ordered ZnS nanotubes by MOCVD-template method. Mater Chem Phys 100:281–284CrossRefGoogle Scholar
  42. Zhu YF, Fan DH, Shen WZ (2008) A general chemical conversion route to synthesize various ZnO-based core/shell structures. J Phys Chem C 112:10402–10406CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Hongyu Sun
    • 1
  • Yan Chen
    • 1
  • Xiaoliang Wang
    • 1
  • Yanwu Xie
    • 1
  • Wei Li
    • 1
  • Xiangyi Zhang
    • 1
  1. 1.State Key Laboratory of Metastable Materials Science and TechnologyYanshan UniversityQinhuangdaoPeople’s Republic of China

Personalised recommendations