Journal of Nanoparticle Research

, Volume 13, Issue 1, pp 77–85 | Cite as

Structural and thermoluminescence properties of undoped and Fe-doped-TiO2 nanopowders processed by sol–gel method

  • Marin Cernea
  • Mihail Secu
  • Corina Elisabeta Secu
  • Mihaela Baibarac
  • Bogdan S. Vasile
Research Paper

Abstract

In this study, we report on the nanocrystalline powders of TiO2 and Fe-doped TiO2 (anatase and rutile phases) prepared by sol–gel method. The X-ray diffraction and Raman spectroscopy measurements indicated the presence of anatase or rutile phase in nanopowders. TEM micrographs showed 10 and 112 nm average particle sizes for anatase and rutile, respectively. Furthermore, their thermoluminescence properties were analyzed.

Keywords

Sol–gel method TiO2 Fe-doped TiO2 Nanopowders Thermoluminescence 

References

  1. Abazovic ND, Comor MI, Dramicanin MD, Jovanovic DJ, Ahrenkiel SP, Nedeljkovic JM (2006) Photoluminescence of anatase and rutile TiO2 particles. J Phys Chem B 110:25366–25370CrossRefGoogle Scholar
  2. Azorin-Vega JC, Azorin-Nieto J, García-Hipolito M, Rivera-Montalvo T (2007) Thermoluminescence properties of TiO2 nanopowder. Radiat Meas 42:613–616CrossRefGoogle Scholar
  3. Bahnemann DW, Hilgendorff M, Memming R (1997) Charge carrier dynamics at TiO2 particles: reactivity of free and trapped holes. J Phys Chem B 101:4265–4275CrossRefGoogle Scholar
  4. Bettinelli M, Speghini A, Falcomer D, Daldosso M, Dallacasa V, Roman L (2006) Photocatalytic, spectroscopic and transport properties of lanthanide-doped TiO2 nanocrystals. J Phys Condes Matter 18:S2149–S2160CrossRefGoogle Scholar
  5. Bruker AXS (2005) TOPAS V3: general profile and structure analysis software for powder diffraction data—User’s Manual. Bruker AXS, KarlsruheGoogle Scholar
  6. Buscema CL, Malibert C, Bach S (2002) Elaboration and characterization of thin films of TiO2 prepared by sol–gel process. Thin Solid Films 418:79–84CrossRefGoogle Scholar
  7. Cavalcante LS, Marques VS, Sczancoski JC, Escote MT, Joya MR, Varela JA, Santos MRMC, Pizani PS, Longo E (2008) Synthesis, structural refinement and optical behavior of CaTiO3 powders: a comparative study of processing in different furnaces. Chem Eng J 143:299–307CrossRefGoogle Scholar
  8. Cavalcante LS, Sczancoski JC, De Vicente FS (2009) Microstructure, dielectric properties and optical band gap control on the photoluminescence behavior of Ba(Zr0.25Ti0.75)O3 thin films. J Sol-Gel Sci Technol 46:35–46CrossRefGoogle Scholar
  9. Chaput F, Boilot JP, Beauger A (1990) Alkoxide–hydroxide route to synthesize BaTiO3-based powders. J Am Ceram Soc 73:942–948CrossRefGoogle Scholar
  10. Cullity BD (1978) Elements of X-ray diffraction. Addison-Wesley Publishing Co., Inc., Reading, pp 233, 296Google Scholar
  11. Frindell KL, Bartl MH, Robinson MR, Bazan GC, Popitsch A, Stucky GD (2003) Visible and near IR luminescence via energy transfer in rare earth doped mesoporous titania thin films with nanocrystalline walls. J Solid State Chem 172:81–88CrossRefGoogle Scholar
  12. Furetta C, Weng PS (1998) Operational thermoluminescence dosimetry. World Scientific, SingaporeGoogle Scholar
  13. Howard CJ, Sabine TM, Dickson F (1991) Structural and thermal parameters for rutile and anatase. Acta Crystallogr: Struct Sci 47:462–468CrossRefGoogle Scholar
  14. Jin Y, Li G, Zhang Y, Zhang Y, Zhang L (2001) Photoluminescence of anatase TiO2 thin films achieved by the addition of ZnFe2O4. J Phys: Condens Matter 13:L913–L918(1)CrossRefGoogle Scholar
  15. Kim DH, Hong HS, Kim SJ, Song JS, Lee KS (2004) Photocatalytic behaviors and structural characterization of nanocrystalline Fe-doped TiO2 synthesized by mechanical alloying. J Alloys Compd 375:259–264CrossRefGoogle Scholar
  16. Kirsh Y (1992) Kinetic analysis of thermoluminescence. Phys Status Solidi (a) 129:15–48CrossRefGoogle Scholar
  17. Krishna KM, Rahman MM, Miki T, Soga T, Igarashi K, Tanemura S, Umeno M (1997) Optical properties of Pb doped TiO2 nanocrystalline thin films: a photoluminescence spectroscopic study. Appl Surf Sci 113–114:149–154CrossRefGoogle Scholar
  18. Lange S, Sildos I, Kiisk V, Aarik J (2004) Energy transfer in the photoexcitation of Sm3+-implanted TiO2 thin films. Mater Sci Eng B 112:87–90CrossRefGoogle Scholar
  19. Lj D, Arsov C, Kormann C, Plieth W (2005) Electrochemical synthesis and in situ Raman spectroscopy of thin films of titanium dioxide. J Raman Spectrosc 22:573–575Google Scholar
  20. Longo VM, Cavalcante LS, Erlo R, Mastelaro VR, de Figueiredo AT, Sambrano JR, de Lazaro S, Freitas AZ, Gomes L, Vieira ND Jr et al (2008) Strong violet–blue light photoluminescence emission at room temperature in SrZrO3: joint experimental and theoretical study. Acta Mater 56:2191–2202CrossRefGoogle Scholar
  21. Lottici PP, Bersani D, Braghini M, Montenero A (1993) Raman scattering characterization of gel-derived titania glas. J Mater Sci 28:177–183CrossRefGoogle Scholar
  22. May CE, Patridge JA (1964) Thermoluminescence kinetics of alpha-irradiated alkali halides. J Chem Phys 40:1401–1409CrossRefGoogle Scholar
  23. Mizushima K, Tanaka M, Asai A, Iida S, Goodenough J (1979) Impurity levels of iron-group ions in TiO2(II). J Phys Chem Solids 40:1129–1140CrossRefGoogle Scholar
  24. Ohsake T, Izumi F, Fujiki Y (1978) Raman spectrum of anatase, TiO2. J Raman Spectrosc 7:321–324CrossRefGoogle Scholar
  25. Patterson AL (1939) The Scherrer formula for X-ray particle size determination. Phys Rev 56:978–982CrossRefGoogle Scholar
  26. Prociow EL, Domaradzki J, Podhorodecki A, Borkowska A, Kaczmarek D, Misiewicz J (2007) Photoluminescence of Eu-doped TiO2 thin films prepared by low pressure hot target magnetron sputtering. Thin Solid Films 515:6344–6346CrossRefGoogle Scholar
  27. Rothenberger G, Moser J, Grätzel M (1985) Charge carrier trapping and recombination dynamics in small semiconductor particles. J Am Chem Soc 107:8054–8059CrossRefGoogle Scholar
  28. Stouwdam JW, van Veggel FCJM (2004) Sensitized emission in Ln3+-doped (Ln = Eu, Yb, Nd, and Er) semiconductor nanoparticles. Chem Phys Chem 5:743–746Google Scholar
  29. Usami A (2000) Theoretical simulations of optical confinement in dye-sensitized nanocrystalline solar cells. Sol Energy Mater Sol Cells 64:73–83CrossRefGoogle Scholar
  30. Wang R, Hashimoto K, Fujishima A, Chikuni M, Kojima E, Kitamura A, Shimohigoshi M, Watanabe T (1997) Light-induced amphiphilic surfaces. Nature 388:431–432CrossRefGoogle Scholar
  31. Wang Z, Zu X, Xiang X, Yu H (2006) Photoluminescence from TiO2/PMMA nanocomposite prepared by γ radiation. J Nanoparticle Res 8:137–139CrossRefGoogle Scholar
  32. Zhang Z, Wang C, Zakaria R, Ying J (1998) Role of particle size in nanocrystalline TiO2-based photocatalysts. J Phys Chem B 102:10871–10878CrossRefGoogle Scholar
  33. Zhang WF, Zhang MS, Yin Z (2000) Microstructures and visible photoluminescence of TiO2 nanocrystals. Phys status solidi (a) 179:319–327CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Marin Cernea
    • 1
  • Mihail Secu
    • 1
  • Corina Elisabeta Secu
    • 1
  • Mihaela Baibarac
    • 1
  • Bogdan S. Vasile
    • 2
  1. 1.National Institute of Materials PhysicsMagurele-BucharestRomania
  2. 2.University Politehnica of BucharestBucharestRomania

Personalised recommendations