Journal of Nanoparticle Research

, Volume 13, Issue 1, pp 69–76 | Cite as

Formation of fractal aggregates during green synthesis of silver nanoparticles

  • Manjeet Singh
  • I. Sinha
  • A. K. Singh
  • R. K. Mandal
Research Paper


The aggregation behavior of silver nanoparticles (AgNPs) prepared by a green synthesis procedure using starch as the stabilizer was studied by the small angle X-ray scattering (SAXS) technique. The protecting ability of starch was affected by the presence of NaOH leading to different aggregation behaviors. In all the samples, mass as well as surface fractal regimes were observed. Assuming spherical form, the radii of nanoparticles were in the range of 11–17 nm.


Silver nanoparticle Green synthesis SAXS analysis Fractal aggregates Nanomedicine 


  1. Albrecht MA, Evans CW, Raston CL (2006) Green chemistry and health implication of nanoparticles. Green Chem 8:417–432. doi:10.1039/b517131h CrossRefGoogle Scholar
  2. Asharani PV, Wu YL, Gong Z, Valiyaveettil S (2008) Toxicity of silver nanoparticles in zebrafish models. Nanotechnology 19:255102 (8pp). doi:10.1088/0957-4484/19/25/255102
  3. AshaRani PV, Mun GLK, Hande MP, Valiyaveettil S (2009) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3(2):279–290. doi:10.1021/nn800596w CrossRefGoogle Scholar
  4. Banholzer MJ, Millstone JE, Qin L, Mirkin CA (2008) Rationally designed nanostructures for surface-enhanced Raman spectroscopy. Chem Soc Rev 37:885–897. doi:10.1039/b710915f CrossRefGoogle Scholar
  5. Bienert R, Emmerling F, Thünemann AF (2009) The size distribution of ‘gold standard’ nanoparticles. Anal Bioanal Chem 395:1651–1660. doi:10.1007/s00216-009-3049-5 CrossRefGoogle Scholar
  6. Boffa V, Castricum HL, Garcia R, Schmuhl R, Petukhov AV, Blank DHA, Elshof JET (2009) Structure and growth of polymeric niobia-silica mixed-oxide sols for microporous molecular sieving membranes: a SAXS study. Chem Mater 21:1822–1828. doi:10.1021/cm802511w CrossRefGoogle Scholar
  7. Freltoft TF, Kjems JK (1986) Power law correlations and finite size effects in silica particle aggregates studied by small angle neutron scattering. Phys Rev B 33:269–275. doi:10.1103/PhysRevB.33.269 CrossRefGoogle Scholar
  8. Fukuyama K, Nishizawa T, Nishikawa K (2001) Effect of hot isostatic pressing on nanopore in glass-like carbon prepared from phenol–formaldehyde resin. Carbon 39:1863–1867. doi:10.1016/S0008-6223(00)00313-4 CrossRefGoogle Scholar
  9. Glatter O, Kratky O (1982) Small angle X-ray scattering. Academic Press, LondonGoogle Scholar
  10. Guinier A, Fournet G (1955) Small-angle scattering of X-rays. Wiley, New YorkGoogle Scholar
  11. Kolb M, Jullien R (1984) Chemically limited versus diffusion limited aggregation. J Phys Lett (Paris) 45:L977–L981Google Scholar
  12. Kolb M, Botet R, Jullien R (1983) Scaling of kinetically growing clusters. Phys Rev Lett 51:1123–1126. doi:10.1103/PhysRevLett.51.1123 CrossRefGoogle Scholar
  13. Lal S, Grady NK, Kundu J, Levin CS, Lassiter JB, Halas NJ (2008) Tailoring plasmonic substrates for surface enhanced spectroscopies. Chem Soc Rev 37:898–911. doi:10.1039/b705969h CrossRefGoogle Scholar
  14. Liu J, Shih WY, Sarykaya M, Aksay IA (1990) Fractal colloidal aggregates with finite interparticle interactions: energy dependence of the fractal dimension. Phys Rev A 41:3206–3213. doi:10.1103/PhysRevA.41.3206 CrossRefGoogle Scholar
  15. Meakin P (1983) Formation of fractal clusters and networks by irreversible diffusion-limited aggregation. Phys Rev Lett 51:1119–1122. doi:10.1103/PhysRevLett.51.1119 CrossRefGoogle Scholar
  16. Morita T, Hatakeyama Y, Nishikawa K, Tanaka E, Shingai R, Murai H, Nakano H, Hino K (2009) Multiple small-angle X-ray scattering analyses of the structure of gold nanorods with unique end caps. Chem Phys 364:14–18. doi:10.1016/j.chemphys.2009.08.007 CrossRefGoogle Scholar
  17. Panigrahi S, Kundu S, Ghosh SK, Nath S, Praharaj S, Basu S, Pal T (2006) Selective one-pot synthesis of copper nanorods under surfactantless condition. Polyhedron 25:1263–1269. doi:10.1016/j.poly.2005.09.006 CrossRefGoogle Scholar
  18. Raveendran P, Fu J, Wallen SL (2003) Completely “green” synthesis and stabilization of metal nanoparticles. J Am Chem Soc 125:13940–13941. doi:10.1021/ja029267j CrossRefGoogle Scholar
  19. Rieker T, Hanprasopwattana A, Datye A, Hubbard P (1999) Particle size distribution inferred from small-angle X-ray scattering and transmission electron microscopy. Langmuir 15:638–641CrossRefGoogle Scholar
  20. Schaefer DW, Keefer KD (1984) Fractal geometry of silica condensation polymers. Phys Rev Lett 53:1383–1386. doi:10.1051/jp3:1996215 CrossRefGoogle Scholar
  21. Schmidt PW (1991) Small-angle scattering studies of disordered, porous and fractal systems. J Appl Crystallogr 24:414–435. doi:10.1107/S0021889891003400 CrossRefGoogle Scholar
  22. Sekulic J, Elshof JET, Blank DHA (2004) A microporous titania membrane for nanofiltration and pervaporation. Adv Mater 16:1546–1550. doi:10.1002/adma.200306472 CrossRefGoogle Scholar
  23. Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interface Sci 145:83–96. doi:10.1016/j.cis.2008.09.002 CrossRefGoogle Scholar
  24. Shih WY, Aksay IA, Kikuchi R (1987) Reversible-growth model: cluster-cluster aggregation with finite binding energies. Phys Rev A 36:5015–5019. doi:10.1103/PhysRevA.36.5015 CrossRefGoogle Scholar
  25. Singh M, Sinha I, Mandal RK (2009) Role of pH in the green synthesis of Silver nanoparticles. Mater Lett 63:425–427. doi:10.1016/j.matlet.2008.10.067 CrossRefGoogle Scholar
  26. Singh M, Sinha I, Premkumar M, Singh AK, Mandal RK (2010) Structural and surface plasmon behavior of Cu nanoparticles using different stabilizers. Colloids Surf A Physicochem Eng Asp 359:88–94. doi:10.1016/j.colsurfa.2010.01.069 CrossRefGoogle Scholar
  27. Smith WE (2008) Practical understanding and use of surface enhanced Raman scattering/surface enhanced resonance Raman scattering in chemical and biological analysis. Chem Soc Rev 37:955–964. doi:10.1039/b708841h CrossRefGoogle Scholar
  28. Sreeram KJ, Nidhin M, Nair BU (2008) Microwave assisted template synthesis of silver nanoparticles. Bull Mater Sci 31:937–942CrossRefGoogle Scholar
  29. Vigneshwaran N, Nachane RP, Balasubramanya RH, Varadarajan PV (2006) A novel one-pot ‘green’ synthesis of stable nanoparticles using soluble starch. Carbohydr Res 341:2012–2018. doi:10.1016/j.carres.2006.04.042 CrossRefGoogle Scholar
  30. Wang H, Qiao X, Chen J, Ding S (2005) Preparation of silver nanoparticles by chemical reduction method. Colloids Surf A Physicochem Eng Asp 256:111–115. doi:10.1016/j.colsurfa.2004.12.058 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Manjeet Singh
    • 1
  • I. Sinha
    • 1
  • A. K. Singh
    • 4
  • R. K. Mandal
    • 2
    • 3
  1. 1.Department of Applied Chemistry, Institute of TechnologyBanaras Hindu UniversityVaranasiIndia
  2. 2.Department of Metallurgical Engineering, Centre of Advanced Study, Institute of TechnologyBanaras Hindu UniversityVaranasiIndia
  3. 3.Unit on Nanoscience and TechnologyBanaras Hindu UniversityVaranasiIndia
  4. 4.Materials Science DivisionDefence Metallurgical Research LaboratoryHyderabadIndia

Personalised recommendations