Journal of Nanoparticle Research

, Volume 12, Issue 7, pp 2667–2678 | Cite as

A hybrid electrochemical–thermal method for the preparation of large ZnO nanoparticles

  • Kodihalli G. Chandrappa
  • Thimmappa V. Venkatesha
  • Kanagalasara Vathsala
  • Chikkadasappa Shivakumara
Research Paper

Abstract

A simple and efficient two-step hybrid electrochemical–thermal route was developed for the synthesis of large quantity of ZnO nanoparticles using aqueous sodium bicarbonate electrolyte and sacrificial Zn anode and cathode in an undivided cell under galvanostatic mode at room temperature. The bath concentration and current density were varied from 30 to 120 mmol and 0.05 to 1.5 A/dm2. The electrochemically generated precursor was calcined for an hour at different range of temperature from 140 to 600 °C. The calcined samples were characterized by XRD, SEM/EDX, TEM, TG-DTA, FT-IR, and UV–Vis spectral methods. Rietveld refinement of X-ray data indicates that the calcined compound exhibits hexagonal (Wurtzite) structure with space group of P63mc (No. 186). The crystallite sizes were in the range of 22–75 nm based on Debye–Scherrer equation. The TEM results reveal that the particle sizes were in the order of 30–40 nm. The blue shift was noticed in UV–Vis absorption spectra, the band gaps were found to be 5.40–5.11 eV. Scanning electron micrographs suggest that all the samples were randomly oriented granular morphology.

Keywords

Granular morphology Hybrid electrochemical–thermal Large ZnO Nanoparticle preparation TEM X-ray diffraction Synthesis method 

References

  1. Andres PR, Bielefeld JD, Henderson JI, Janes DB, Kolagunta VR, Kubiak PC, Mahoney JW, Osifchin GR (1996) Self-assembly of a two-dimensional superlattice of molecularly linked metal clusters. Science 273:1690–1693CrossRefADSGoogle Scholar
  2. Bae SY, Seo HW, Park J (2004) Vertically aligned sulfur-doped ZnO nanowires synthesized via chemical vapor deposition. J Phy Chem B 108:5206–5210CrossRefGoogle Scholar
  3. Baolong Y, Guilan Z, Guoqing T, Xiaochun W, Wenju C (1995) Electronic spin resonance properties of ZnO nanocrystalline. Acta Phys Chim Sin 11(7):587–589; in ChineseGoogle Scholar
  4. Berube LP, Esperance GL (1989) A quantitative method of determining the degree of texture of zinc electrodeposits. J Electrochem Soc 136:2314CrossRefGoogle Scholar
  5. Caijun X (2003) Nanocrystalline build material. Chemical Industrial Press, Beijing, pp 51–51Google Scholar
  6. Chen BJ, Sun XW, Xu CX, Tay BK (2004) Growth and characterization of zinc oxide nano/micro-fibers by thermal chemical reactions and vapor transport deposition in air. Phys E 21:103–107CrossRefGoogle Scholar
  7. Deng HM, Ding J, Shi Y, Liu XY, Wang J (2001) Ultrafine Zinc oxide powders prepared by precipitation/mechanical milling. J Mater Sci 36:3273–3276CrossRefGoogle Scholar
  8. Faal Hamedani N, Farzaneh F (2006) Synthesis of ZnO nanocrystals with hexagonal (Wurtzite) structure in water using microwave irradiation. J Sci Islam Repub Iran 17(3):231–234Google Scholar
  9. Gao-Qing Y, Huan-feng J, Chang L, Shi-Jun L (2007) Shape- and size-controlled electrochemical synthesis of cupric oxide nanocrystals. J Cryst Growth 303:400–406CrossRefADSGoogle Scholar
  10. Helen Annal Therese G, Kamath PV (2000) Electrochemical synthesis of metal oxides and hydroxides. Chem Mater 12(5):1195–1204CrossRefGoogle Scholar
  11. Hengxiang G, Yunyao H, Qifeng W, Guojuan J, Zebo F, Yinyue W (2004) Polycrystalline ZnO films deposited on glass by RF reactive sputtering. Semicond Photonics Technol 10(2):97–100Google Scholar
  12. Ho Jung C, Cheng Zhu L, Yongsheng W, Chang-Sik S, Seong-Il K, Young-Hwan K, In-Hoon C (2004) Optical properties of ZnO nanocrystals synthesized by using sol–gel method. J Korean Phys Soc 45(4):959–962Google Scholar
  13. Jiaqiang X, Qingyi P, Yuan S, Zhanchai L (1998) Emulsion synthesis microstructure and gas sensing properties of nanocrystalline ZnO ceramics. Chin J Inorg Chem 14(3):355–359; in ChineseGoogle Scholar
  14. Joseph S, Kamath PV (2007) Electrodeposition of Cu2O coatings on stainless steel substrates-control over orientation and morphology. J Electrochem Soc 154(7):E102–E106CrossRefGoogle Scholar
  15. Kakiuchi K, Hosono E, Kimura T, Imai H, Fujihara S (2006) Fabrication of mesoporous ZnO nanosheets from precursor templates grown in aqueous solutions. J Sol–Gel Sci Technol 39:63–72CrossRefGoogle Scholar
  16. Kamath VP (2002) Photophysical, photochemical and photocatalytic aspects of metal nanoparticles. J Phys Chem B106:7729–7744CrossRefGoogle Scholar
  17. Li YJ, Duan R, Shi PB, Qin GG (2004) Synthesis of ZnO nanoparticles on Si substrates using a ZnS source. J Cryst Growth 260:309–315CrossRefADSGoogle Scholar
  18. Li YQ, Fu SY, Mai YW (2006) Preparation and characterization of transparent ZnO/epoxy nanocomposites with high-UV shielding efficiency. Polymer 47:2127–2132CrossRefGoogle Scholar
  19. Lian G, Wei L (2002) Nanocrystalline ceramics. Chemical Industrial Press, Beijing, pp 45–48Google Scholar
  20. Liewhiran C, Phanichphant S (2006) Nano-sized ZnO particles coated on fly ash. J Microsc Soc Thailand 20(1):49–56Google Scholar
  21. Liqiang J, Zili X, Jing S, Xiaojun S, Weimin C, Haichen G (2002) The preparation and characterization of ZnO ultrafine particles. Mater Sci Eng 332(7):356–362Google Scholar
  22. Nakata Y, Okada T, Maeda M (2002) Deposition of ZnO film by pulsed laser deposition at room temperature. Appl Surf Sci 197:368–370CrossRefADSGoogle Scholar
  23. Perenboom JAAJ, Wyder P, Meier P (1981) Electronic properties of small metallic particles. Phys Rep 78:173–292CrossRefADSGoogle Scholar
  24. Prasad BE, Kamath PV, Sarala U (2008) Electrochemical synthesis of macroporous oxide coatings on stainless-steel substrates. J Amer Ceram Soc 91(12):3870–3874CrossRefGoogle Scholar
  25. Qingfeng L, Hongxiang W, Zhudong H (2004) ZnO nanoneedles fabricated by a simple approach and their optical properties. Trans Nonferrous Met Soc China 14(5):973–976Google Scholar
  26. Rao CNR (1963) Chemical applications of infrared spectroscopy. Academic Press, New YorkGoogle Scholar
  27. Rao KJ, Mahesh K, Kumar S (2005) A strategic approach for preparation of oxide nanomaterials. Bull Mater Sci 28(1):19–24CrossRefGoogle Scholar
  28. Sang B, Konagai M (1996) Growth of transparent conductive oxide ZnO films by atomic layer deposition. J Appl Phys 35:602–605CrossRefGoogle Scholar
  29. Scherrer P (1918) Nachr ges wiss Gottingen. Math Phys 2:98–100Google Scholar
  30. Shiwen D, Shaoyan Z, Shujuan L, Yu D, Quanying K, Yanchao L (2002) Synthesis and photocatalyzing property of nano-ZnO. Chin J Inorg Chem 18(10):1015–1018; in ChineseGoogle Scholar
  31. Sihai C, Xinmin R (1999) Mechanism study on the formation of ZnO nanoparticle in ethanol solution. Acta Phys Chim Sin 11(2):171–174; in ChineseGoogle Scholar
  32. Srinivasan G, Kumar J (2006) Optical and structural characterisation of zinc oxide thin films prepared by sol-gel process. Cryst Res Technol 41(9):893–896CrossRefGoogle Scholar
  33. Stolt L, Hedstrom J, Kessler J, Ruckh M, Velthaus KO, Schock HW (1993) ZnO/CdS/CuInSe2 thin-film solar cells with improved performance. Appl Phys Lett 62:597–599CrossRefADSGoogle Scholar
  34. Thomas JM (1988) Colloidal metals: past, present and future. J Pure Appl Chem 60:1517–1528CrossRefADSGoogle Scholar
  35. Vafaee M, Ghamsari MS (2007) Preparation and characterization of ZnO nanoparticles by a novel sol–gel route. Mater Lett 61:3265–3268CrossRefGoogle Scholar
  36. Vayssieres L (2003) Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions. Adv Mater 15:464–466CrossRefGoogle Scholar
  37. Wan Q, Yu K, Wang TH, Lin CL (2003) Low-field electron emission from tetrapod-like ZnO nanostructures synthesized by rapid evaporation. Appl Phys Lett 83(11):2253–2255CrossRefADSGoogle Scholar
  38. Wang ZL (2004) Nanostructures of zinc oxide. Mater Today 7:26–33CrossRefGoogle Scholar
  39. Wang JX, Sun XW, Wei A, Lei Y, Cai XP, Li CM, Dong ZL (2006) Zinc oxide nanocomb biosensor for glucose detection. Appl Phys Lett 88:233106(1–3)Google Scholar
  40. Weizhong Y, Dali Z, Guangfu Y, Runsheng W, Yun Z (2005) Characterization of ZnO based varistor derived from nano ZnO powders and ultrafine dopants. J Mater Sci Technol 21(2):183–186Google Scholar
  41. Wenliang W, Dongsheng L, Xiangyang H, Zhenmin S, Jiwu W, Caihua Z (2001) Ultrasonic radiation precipitation preparation and characterization on nanocrystalline zinc oxide. Chem Res Appl 13(2):157–159; in ChineseGoogle Scholar
  42. Xianxi Z, Xiaojuan W, Guanjie Z, Jianzhuang J (2002) Nanocrystalline ZnO preparation through basic zinc carbonate calcinations. Chin J Inorg Chem 18(10):1038–1040; in ChineseGoogle Scholar
  43. Xitang Z, Jiaqi Z, Jinjie X, Tengfeng X, Dejun W, Yubai B, Tiejin L, Jiannian Y (1999) Studies of surface photovoltage spectroscopy on quantum-sized ZnO nanoparticles. Chem J Chin Univ 20(12):1945–1947Google Scholar
  44. Xu CX, Sun XW, Chen BJ, Sun CQ, Tay BK (2004) Nanostructural ZnO fabricated by vapor-phase transport in air. Int J Mod Phys B 18(2):225–232CrossRefADSGoogle Scholar
  45. Yan Z (2003) Nanocrystalline catalytic technology. Chemical Industrial Press, Beijing, p 68Google Scholar
  46. Yifeng C, Motang T, Shenghai Y, Baoping Z, Jianguang Y (2004) Preparation of tetrapod-like ZnO whiskers from waste hot dipping zinc. J Cent South Univ Technol 11(1):51–54CrossRefGoogle Scholar
  47. Yongjun H (2004) Synthesis of ZnO nanoparticles with narrow size distribution under pulsed microwave heating. China Particuol 2(4):168–170CrossRefGoogle Scholar
  48. Yongning H, Xiaoliang S, Lidun M (1996) Synthesis and characterization of nanocrystalline-sized zinc oxide. Chin J Appl Chem 13(4):92–94; in ChineseGoogle Scholar
  49. Yoo YZ, Jin ZW, Chikyow T, Fukumura T, Kawasaki M, Koinuma H (2002) S doping in ZnO film by supplying ZnS species with pulsed-laser-deposition method. Appl Phys Lett 81:3798CrossRefADSGoogle Scholar
  50. Zhaorigetu S, Yao H, Garidi (2006) Preparation and characterization of nanocrystalline ZnO by direct precipitation method. Front Chem China 3:277–280Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Kodihalli G. Chandrappa
    • 1
  • Thimmappa V. Venkatesha
    • 1
  • Kanagalasara Vathsala
    • 1
  • Chikkadasappa Shivakumara
    • 2
  1. 1.Department of P.G. Studies & Research in Chemistry, School of Chemical SciencesKuvempu UniversityShankaraghattaKarnatakaIndia
  2. 2.Solid State and Structural Chemistry UnitIndian Institute of ScienceBangaloreIndia

Personalised recommendations