Asharani P, Wu Y, Gong Z, Valiyaveettil S (2008) Toxicity of silver nanoparticles in zebrafish models. Nanotechnology 19:255102
Article
ADS
Google Scholar
Callegari A, Tonti D, Chergui M (2003) Photochemically grown silver nanoparticles with wavelength-controlled size and shape. Nano Lett 3:1565–1568
Article
CAS
ADS
Google Scholar
Chandaroy P, Sen A, Alexandridis P, Hui S (2002) Utilizing temperature-sensitive association of Pluronic F-127 with lipid bilayers to control liposome-cell adhesion. Biochim Biophys Acta 1559:32–42
Article
CAS
PubMed
Google Scholar
Chen M, Feng YG, Wang X, Li TC, Zhang JY, Qian DJ (2007) Silver nanoparticles capped by oleylamine: Formation, growth, and self-organization. Langmuir 23:5296–5304
Article
CAS
PubMed
Google Scholar
Chudasama B, Vala A, Andhariya N, Mehta R, Upadhyay R (2009) Enhanced antibacterial activity of bifunctional Fe3O4-Ag core-shell nanostructures. Nano Res 2:955–965
Article
CAS
Google Scholar
Cubillo A, Pecharroman C, Aguilar E, Santaren J, Moya J (2006) Antibacterial activity of copper monodispersed nanoparticles into sepiolite. J Mater Sci 41:5208–5212
Article
ADS
Google Scholar
Desai V, Kowshik M (2009) Antimicrobial activity of titanium dioxide nanoparticles synthesized by sol-gel technique. Res J Microbiol 4:97–103
Article
CAS
Google Scholar
Elechiguerra JL, Burt JL, Morons JR, Camacho-bragado A, Gao X, Lara HH, Yacaman MJ (2005) Interaction of silver nanoparticles with HIV-1. Nanobiotechnol 3:6–16
Article
Google Scholar
Esumi K, Tano T, Torigoe K, Meguru K (1990) Preparation and characterization of bimetallic Pd-Cu colloids by thermal decomposition of their acetate compounds in organic solvents. Chem Mater 2:564–567
Article
CAS
Google Scholar
Feng QL, Wu J, Chen GO, Cui FZ, Kim TN, Kim JO (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52:662–668
Article
CAS
PubMed
Google Scholar
Gao F, Lu QY, Komarneni S (2005) Interface reaction for the self-assembly of silver nanocrystals under microwave-assisted solvothermal conditions. Chem Mater 17:856–860
Article
CAS
Google Scholar
Gong P, Li H, He X, Wang K, Hu J, Tan W, Zhang S, Yang X (2007) Preparation and antibacterial activity of Fe3O4@Ag nanoparticles. Nanotechnology 18:285604
Article
ADS
Google Scholar
Gonzales M, Krishnan KM (2007) Phase transfer of highly monodisperse iron oxide nanocrystals with Pluronic F127 for biological applications. J Magn Magn Mater 311:59–62
Article
CAS
ADS
Google Scholar
Henglein A, Giersig M (1999) Formation of colloidal silver nanoparticles: capping action of citrate. J Phys Chem B 103:9533–9539
Article
CAS
Google Scholar
Hiramatsu H, Osterloh FE (2004) A simple large scale synthesis of nearly monodisperse gold and silver nanoparticles with adjustable sizes and with exchangeable surfactants. Chem Mater 16:2509–2511
Article
CAS
Google Scholar
Huang HH, Ni XP, Loy GL, Chew CH, Tan KL, Loh FC, Deng FC, Xu GQ (1996) Photochemical formation of silver nanoparticles in poly(N-vinylpyrrolidone). Langmuir 12:909–912
Article
CAS
Google Scholar
Jana NR, Peng XG (2003) Single-phase and gram-scale routes toward nearly monadisperse Au and other noble metal nanocrystals. J Am Chem Soc 125:14280–14281
Article
CAS
PubMed
Google Scholar
Kawashita M, Toda S, Kim HM, Kokubo T, Masuda NJ (2003) Preparation of antibacterial silver-doped silica glass microspheres. Biomed Mater Res A 66:266–274
Article
Google Scholar
Kewibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, Berlin
Kloepfer J, Mielke R, Nadeau J (2005) Uptake of CdSe and CdSe/ZnS quantum dots into bacteria via purine-dependent mechanisms. Appl Environ Microbiol 71:2548–2557
Article
CAS
PubMed
Google Scholar
Kluytmans J, Van BA, Verbrugh H (1997) Nasal carriage of Staphylococcus aureus: epidemiology, underlying mechanisms, and associated risks. Clin Microbiol Rev 10:505–520
CAS
PubMed
Google Scholar
Kroser J (2008) Shigellosis: overview: emedicine 12
Kyriacou SV, Brownlow WJ, Xu X-HN (2004) Using nanoparticle optics assay for direct observation of the function of antimicrobial agents in single live bacterial cells. Biochemistry 43:140–147
Article
CAS
PubMed
Google Scholar
Lee GJ, Shin SI, Kim YC, Oh SG (2004) Preparation of silver nanorods through the control of temperature and pH of reaction medium. Mater Chem Phys 84:197–204
Article
CAS
Google Scholar
Lee D, Cohen RE, Rubner MF (2005) Antibacterial properties of Ag nanoparticle loaded multilayers and formation of magnetically directed antibacterial microparticles. Langmuir 21:9651–9659
Article
CAS
PubMed
Google Scholar
Liz-Marzan LM, Philipse AP (1995) Stable hydrosols of metallic and bimetallic nanoparticles immobilized on imogolite fibers. J Phys Chem 99:15120–15128
Article
CAS
Google Scholar
Mafune F, Kohnok JY, Takeda Y, Kondow T (2000) Structure and stability of silver nanoparticles in aqueous solution produced by laser ablation. J Phys Chem B 104:8333–8337
Article
CAS
Google Scholar
Melaiye A, Sun Z, Hindi K, Milsted A, Ely D, Reneker DH, Tessier CA, Youngs WJ (2005) Silver(I) imidazole cyclophane gem-dio\complexes encapsulated by electrospun tecophilic nanofibers: formation of nanosilver particles and antimicrobial activity. J Am Chem Soc 127:2285–2291
Article
CAS
PubMed
Google Scholar
Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346
Article
CAS
ADS
Google Scholar
Mulvaney P (1996) Surface plasmon spectroscopy of nanosized metal particles. Langmuir 12:788–800
Article
CAS
Google Scholar
Novak JP, Feldheim DL (2000) Assembly of phenylacetylene-bridged gold and silver nanoparticle arrays. J Am Chem Soc 122:3979–3980
Article
CAS
Google Scholar
Nover L, Scharf KD, Nuemann D (1983) Formation of cytoplasmic heat shock granules in tomato cell cultures and leaves. Mol Cell Biol 3:1648–1655
CAS
PubMed
Google Scholar
Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiology 73:1712–1720
Article
CAS
Google Scholar
Panacek A, Kvitek L, Prucek R, Kolar M, Vecerova R, Pizurova N, Sharma VK, Nevecna T, Zboril R (2006) Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phys Chem B 110:16248–16253
Article
CAS
PubMed
Google Scholar
Qourzal S, Tamimi M, Assabbane A, Bouamrane A, Nounah A, Laanab L, Ait-Ichou Y (2006) Preparation of TiO2 photocatalyst using TiCl4 as a precursor and its photocatalytic performance. J Appl Sci 6:1553–1559
Article
CAS
Google Scholar
Raveendran P, Fu J, Wallen SL (2003) Completely “green” synthesis and stabilization of metal nanoparticles. J Am Chem Soc 125:13940–13941
Article
CAS
PubMed
Google Scholar
Roy R, Hoover MR, Bhalla AS, Slaweekl T, Dey S, Cao W, Li J, Bhaskar S (2008) Ultradilute Ag-aquasols with extraordinary bactericidal properties: role of the system Ag-O-H2O. Mater Res Innov 11:3–18
Article
Google Scholar
Sun YG, Xia YN (2002) Shape-controlled synthesis of gold and silver nanoparticles. Science 298:2176–2179
Article
CAS
PubMed
ADS
Google Scholar
Sun YG, Yin YD, Mayers BT, Herricks T, Xia YN (2002) Uniform silver nanowires can be synthesized by reducing AgNo3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone). Chem Mater 14:4736–4745
Article
CAS
Google Scholar
Sun YG, Mayers B, Xia YN (2003) Transformation of silver nanospheres into nanobelts and triangular nanoplates through a thermal process. Nano Lett 3:675–679
Article
CAS
ADS
Google Scholar
Taleb A, Petit C, Pileni MP (1997) Synthesis of highly monodisperse silver nanoparticles from AOT reverse micelles: a way to 2D and 3D self-organization. Chem Mater 9:950–959
Article
CAS
Google Scholar
Tiwari D, Behari J, Sen P (2008) Time and dose-dependent antimicrobial potential of Ag nanoparticles synthesized by top-down approach. Curr Sci 95:647–655
CAS
Google Scholar
Todak K (2007) Online textbook of bacteriology. University of Wisconsin-Madison, p 11
Toshima N, Yonezawa T, Kushihashi K (1993) Polymer-protected palladium–platinum bimetallic clusters: preparation, catalytic properties and structural considerations. J Chem Soc Faraday Trans 89:2537–2543
Article
CAS
Google Scholar
Vertelov GK, Krutyakov YA, Efremenkova OV, Olenin AY, Lisichkin GV (2008) A versatile synthesis of highly bactericidal Myramistin® stabilized silver nanoparticles. Nanotechnology 19:355707
Article
Google Scholar
Xiong YJ, Xie Y, Du GO, Liu XM, Tian XB (2002) Ultrasound-assisted self-regulation route to Ag nanorods. Chem Lett 31:98–99
Article
Google Scholar
Yamamoto O, Sawai J, Ishimura N, Kojima H, Sasumoto T (1999) Change of antibacterial activity with oxidation of ZnS powder. J Ceram Soc Jpn 107:853–856
CAS
Google Scholar
Yamamoto O, Komatsu M, Sawai J, Nakagawa Z (2004) Effect of lattice constant of zinc oxide on antibacterial characteristics. J Mater Sci 15:847–851
CAS
Google Scholar
Yanagihara N, Tanaka Y, Okamotot H (2001) Formation of silver nanoparticles in poly(methyl methacrylate) by UV irradiation. Chem Lett 30:796–797
Article
Google Scholar
Zhang ZQ, Patel RC, Kothari R, Johnson CP, Friberg SE, Aikens PA (2000) Stable silver clusters and nanoparticles prepared in polyacrylate and inverse micellar solutions. J Phys Chem B 104:1176–1182
Article
CAS
Google Scholar
Zhang J, Rana S, Srivastava R, Misra R (2008) On the chemical synthesis and drug delivery response of folate receptor-activated, polyethylene glycol-functionalized magnetite nanoparticles. Acta Biomater 4:40–48
Article
CAS
PubMed
Google Scholar