Skip to main content
Log in

Uniform YF3:Yb,Er up-conversion nanophosphors of various morphologies synthesized in polyol media through an ionic liquid

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

We describe a facile procedure for the synthesis at low temperature (120 °C) of water-dispersible uniform YF3:Yb,Er up-conversion nanophosphors of various morphologies (rhombic and spheroidal) by homogeneous precipitation in polyol solutions containing different lanthanide salts and an ionic liquid (1-butyl, 2-methylimidazolium tetrafluoroborate) as fluoride source. It is shown that the shape of the obtained nanoparticles is mainly determined by the nature of both, the polyol and the lanthanide precursors, which also affects to their colloidal stability in water suspensions. These morphological differences are explained on the basis of a different mechanism of particle formation. The efficiency of the up-conversion processes in the synthesized rhombic and spheroidal nanoparticles is also comparatively analyzed and the observed differences are justified on the basis of the different impurities incorporated to the nanophosphors during their synthesis process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Ammar S, Jouini N, Fievet F, Stephan O, Marhic C, Richard M, Villain F, Cartier dit Moulin Ch, Brice S, Sainctavit Ph (2004) Influence of the synthesis parameters on the cation distribution of ZnFe2O4 nanoparticles obtained by forced hydrolysis in polyol medium. J Non-Cryst Solids 345 & 346:658–662

    Article  CAS  Google Scholar 

  • Cantelar E, Cussó F (2003) Comparative up-conversion mechanisms in Er3+/Yb3+ co-doped LiNbO3. J Lumin 102–103:525–531

    Article  CAS  Google Scholar 

  • Cao C, Qin W, Zhang J, Zhang J, Wang Y, Jin Y, Wei G, Wang G, Wang L (2008) Multicolor up-conversion emissions of Tm3+/Er3+/Yb3+ Tri-doped YF3 phosphors. J Nanosci Nanotechnol 8:1384–1387

    PubMed  CAS  Google Scholar 

  • Capobianco JA, Vetrone F, Boyer JC, Speghini A, Bettinelli M (2002) Enhancement of red emission (4F9/24I15/2) via upconversion in bulk and nanocrystalline cubic Y2O3:Er3+. J Phys Chem B 106:1181–1187

    Article  CAS  Google Scholar 

  • Caruntu D, Remond Y, Chow NH, Jun MJ, Caruntu G, He J, Goloverda G, O`Connors C, Kolesnichenko V (2002) Reactivity of 3d transition metal cations in diethylene glycol solutions. Synthesis of transition metal ferrites with the structure of discrete nanoparticles complexed with long-chain carboxylate anions. Inorg Chem 41:6137–6146

    Article  PubMed  CAS  Google Scholar 

  • Colthup NB, Daly LH, Wiberley SE (1990) Introduction to infrared and Raman spectroscopy. Academic Press, San Diego, p 318

    Google Scholar 

  • Cui Y, Fan X, Hong Z, Wang M (2006) Synthesis and luminescence properties of lanthanide(III)-doped YF3 nanoparticles. J Nanosci Nanotechnol 6:830–836

    Article  PubMed  CAS  Google Scholar 

  • Cusso F, Lifante G, Muñoz JA, Cantelar E, Nevado R, Cino A, De Micheli MP, Sohler W (2001) Spectroscopic investigation of proton exchanged Er-doped lithium niobate waveguides. Radiat Eff Defect Solids 155:217–221

    Article  CAS  Google Scholar 

  • De G, Qin W, Zhang J, Zhao D, Zhang J (2005) Bright-green upconversion emission of hexagonal LaF3: Yb3+, Er3+ nanocrystals. Chem Lett 34:914–991

    Article  CAS  Google Scholar 

  • De G, Qin W, Zhang J, Zhang J, Wang Y, Cao C, Cui Y (2006) Effect of OH− on the upconversion luminescent efficiency of Y2O3:Yb3+, Er3+ nanostructures. Solid State Commun 137:483–487

    Article  ADS  CAS  Google Scholar 

  • Downing E, Hesselink L, Ralston J, Macfarlane R (1996) A three-color, solid-state, three-dimensional display. Science 273:1185–1189

    Article  ADS  CAS  Google Scholar 

  • Johnson LF, Guggenheim HJ, Rich TC, Ostermayer FW (1972) Infrared-to-visible conversion by rare-earth ions in crystals. J Appl Phys 43:1125–1167

    Article  ADS  CAS  Google Scholar 

  • Kong DY, Wang ZL, Lin CK, Quan ZW, Li YY, Li CX, Lin J (2007) Biofunctionalization of CeF3:Tb3+ nanoparticles. Nanotechnology 18:075601

    Article  ADS  CAS  Google Scholar 

  • Kramer KW, Biner D, Frei G, Gudel HU, Hehlen MP, Luthi SR (2004) Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors. Chem Mater 16:1244–1251

    Article  CAS  Google Scholar 

  • LaMer VK, Dinegar RJ (1950) Theory, production and mechanism of formation of monodispersed hydrosols. J Am Chem Soc 72:4847–4854

    Article  CAS  Google Scholar 

  • Li Z, Zhang Y (2008) An efficient and user-friendly method for the synthesis of hexagonal-phase NaYF4:Yb, Er/Tm nanocrystals with controllable shape and upconversion fluorescence. Nanotechnology 19:345606

    Article  CAS  Google Scholar 

  • Mai HX, Zhang YW, Sun LD, Yan CH (2007) Highly efficient multicolor up-conversion emissions and their mechanisms of monodisperse NaYF4:Yb, Er core and core/shell-structured nanocrystals. J Phys Chem C 111:13721–13729

    Article  CAS  Google Scholar 

  • Matijević E (1993) Preparation and properties of uniform size colloids. Chem Mater 5:412–426

    Article  Google Scholar 

  • Matsuura H, Miyazawa T (1967) Infrared spectra and molecular vibrations of ethylene glycol and deuterated derivatives. Bull Chem Soc Jpn 40:85–94

    Article  CAS  Google Scholar 

  • Nuñez NO, Ocaña M (2007) An ionic liquid based synthesis method for uniform luminescent lanthanide fluoride nanoparticles. Nanotechnology 18:455606

    Article  ADS  CAS  Google Scholar 

  • Nuñez NO, Míguez H, Quintanilla M, Cantelar E, Cussó F, Ocaña M (2008) Synthesis of spherical down- and up-conversion NaYF4-based nanophosphors with tunable size in ethylene glycol without surfactants or capping additives. Eur J Inorg Chem 4517–4524

  • Ocaña M, Rodriguez-Clemente R, Serna CJ (1995) Uniform colloidal particles in solution: formation mechanisms. Adv Mater 7:212–216

    Article  Google Scholar 

  • Poul L, Ammar S, Jouini N, Fievet F (2003) Synthesis of inorganic compounds (metal, oxide and hydroxide) in polyol medium: a versatile route related to the sol–gel process. J Sol-Gel Sci Technol 26:261–265

    Article  CAS  Google Scholar 

  • Schäfer H, Ptacek P, Kömpe K, Haase M (2007) Lanthanide-doped NaYF4 nanocrystals in aqueous solution displaying strong up-conversion emission. Chem Mater 19:1396–1400

    Article  CAS  Google Scholar 

  • Scheps R (1996) Prog upconversion laser processes. Prog Quantum Electron 20:271–358

    Article  ADS  CAS  Google Scholar 

  • Shalav A, Richards BS, Trupke T, Krämer KW, Güdel HU (2005) Application of NaYF4:Er3+ up-converting phosphors for enhanced near-infrared silicon solar cell response. Appl Phys Lett 86:013505

    Article  ADS  CAS  Google Scholar 

  • Stouwdam JW, van Veggel FCJM (2002) Near-infrared emission of redispersible Er3+, Nd3+, and Ho3+ doped LaF3 nanoparticles. Nano Lett 2:733–737

    Article  ADS  CAS  Google Scholar 

  • Sun YJ, Chen Y, Tian LJ, Yu Y, Kong XG, Zhao JW, Zhang H (2007) Controlled synthesis and morphology dependent upconversion luminescence of NaYF4:Yb, Er nanocrystals. Nanotechnology 18:275609

    Article  ADS  CAS  Google Scholar 

  • Tao F, Wang Z, Yao L, Cai W, Li X (2007) Synthesis and photoluminescence properties of truncated octahedral Eu-doped YF3 submicrocrystals or nanocrystals. J Phys Chem 111:3241–3245

    CAS  Google Scholar 

  • Vetrone F, Boyer JC, Capobianco JA, Speghini A, Bettinelli M (2004) Significance of Yb3+ concentration on the upconversion mechanisms in codoped Y2O3:Er3+, Yb3+ nanocrystals. J Appl Phys 96:661–667

    Article  ADS  CAS  Google Scholar 

  • Wang F (2006) Facile synthesis of water-soluble LaF3:Ln3+ nanocrystals. J Mater Chem 16:1031–1034

    Article  ADS  CAS  Google Scholar 

  • Wang L, Li Y (2007) Controlled synthesis and luminescence of lanthanide doped NaYF4 nanocrystals. Chem Mater 19:727–734

    Article  CAS  Google Scholar 

  • Wang ZL, Quan ZW, Jia PY, Lin CK, Luo Y, Chen Y, Fang J, Zhou W, O′Connor CJ, Lin J (2006) A facile synthesis and photoluminescent properties of redispersible CeF3, CeF3:Tb3+, and CeF3:Tb3+/LaF3 (core/shell) nanoparticles. Chem Mater 18:2030–3037

    Article  CAS  Google Scholar 

  • Wang J, Bo S, Song L, Hu J, Liu X, Zhen Z (2007) One-step synthesis of highly water-soluble LaF3:Ln3+ nanocrystals in methanol without using any ligands. Nanotechnology 18:465606

    Article  ADS  CAS  Google Scholar 

  • Wang GF, Qin WP, Zhang JS, Zhang JS, Wang Y, Cao CY, Wang LL, Wei GD, Zhu PF, Kim R (2008) Enhancement of violet and ultraviolet upconversion emissions in Yb3+/Er3+-codoped YF3 nanocrystals. Opt Mater 31:296

    Article  ADS  CAS  Google Scholar 

  • Wang GF, Qin WP, Wei GD, Wang LL, Zhu PF, Kim RJ, Zhang DS, Ding FH, Zheng KZ (2009) Synthesis and upconversion luminescence properties of YF3:Yb3+/Tm3+ octahedral nanocrystals. J Fluor Chem 130:158–161

    Article  CAS  Google Scholar 

  • Wei Y, Lu F, Zhang X, Chen D (2007) Polyol-mediated synthesis of water-soluble LaF3:Yb, Er upconversion fluorescent nanocrystals. Mater Lett 61:1337–1340

    Article  CAS  Google Scholar 

  • Weng F, Chen D, Wang Y, Yu Y, Huang P, Lin H (2009) Energy transfer and up-conversion luminescence in Er3+/Yb3+ co-doped transparent glass–ceramic containing YF3 nanocrystals. Ceram Int 35:2619–2623

    Article  CAS  Google Scholar 

  • Xu S, Fang D, Zhang Z, Jiang Z (2005) Effect of OH− on upconversion luminescence of Er3+-doped oxyhalide tellurite glasses. J Solid State Chem 178:2159–2162

    Article  ADS  CAS  Google Scholar 

  • Yan R, Li Y (2005) Down/up conversion in Ln3+-doped YF3 nanocrystals. Adv Funct Mater 15:763–770

    Article  CAS  Google Scholar 

  • Yi G, Chow G (2005) Colloidal LaF3:Yb, Er, LaF3:Yb, Ho and LaF3:Yb, Tm nanocrystals with multicolor upconversion fluorescence. J Mater Chem 15:4460–4464

    Article  CAS  Google Scholar 

  • Yi GS, Chow GM (2006) Synthesis of hexagonal-phase NaYF4: Yb, Er and NaYF4: Yb, Tm nanocrystals with efficient up-conversion fluorescence. Adv Funct Mater 16:2324–2329

    Article  CAS  Google Scholar 

  • Yi G, Lu H, Zhao S, Ge Y, Yang W, Chen D, Guo L (2004) Synthesis, characterization, and biological application of size-controlled nanocrystalline NaYF4:Yb, Er infrared-to-visible up-conversion phosphors. Nanoletters 4:2191–2196

    ADS  CAS  Google Scholar 

  • Zhang T, Guo H, Qiao YM (2009) Facile synthesis, structural and optical characterization of LnF3:Re nanocrystals by ionic liquid-based hydrothermal process. J Lumin 129:861–866

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been funded by the Spanish Ministerio de Educación y Ciencia (MEC) (grant MAT2008-02166), Junta de Andalucía (grant FQM3579) and Comunidad de Madrid (grant MICROSERES S-0505/TIC/0191). N.O. Nuñez thanks the Spanish Research Council for funding her contract under the JAE program. M. Quintanilla wants to thank the Spanish Ministerio de Educación y Ciencia for an FPU fellowship. We also acknowledge Mr. Victor González for his technical assistance in the DRIFT and TPD measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Ocaña.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nuñez, N.O., Quintanilla, M., Cantelar, E. et al. Uniform YF3:Yb,Er up-conversion nanophosphors of various morphologies synthesized in polyol media through an ionic liquid. J Nanopart Res 12, 2553–2565 (2010). https://doi.org/10.1007/s11051-009-9824-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-009-9824-6

Keywords

Navigation