Skip to main content
Log in

Effect of the temperature on the synthesis of (K,Na)NbO3-modified nanoparticles by a solid state reaction route

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

(Na0.5K0.5)NbO3 (KNN)-modified nano-particulated powders, based on variations of sodium–potassium niobate, were synthesised by solid state reaction from carbonate starting materials. The nanoparticles were attained by an optimization of the raw materials particle size and particle refinement of the carbonates during their decomposition. Particle sizes between 50 and 200 nm have been obtained as a function of calcination (decomposition) temperature. The obtained powders showed a co-existence between a tetragonal phase and an orthorhombic phase. The optimization of the raw materials particle size and the particle refinement of the carbonates during their decomposition play a key role in the formation of the KNN-modified nano particles. The developed method is well suited for the production of KNN-modified nano powders at low cost for mass production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bomlai P, Wichianrat P, Muensit S, Milne SJ (2007) Effect of calcination conditions and excess alcali carboante on the phase formation and particle morphology of Na0.5K0.5NbO3 powders. J Am Ceram Soc 90:1650–1655

    Google Scholar 

  • Chowdhury A, Bould J, Zhang Y, James C, Milne SJ (2009) Nano-powders of Na0.5K0.5NbO3 made by a sol–gel method. J Nanopart Res. doi:10.1007/s11051-009-9595-0

  • Chowdhury A, O’Callaghan S, Skidmore TA, James C, Milne SJ (2009b) Nano-powders prepared of Na0.5K0.5NbO3 made by the Pechini method. J Am Ceram Soc 92:758–761

    Article  CAS  Google Scholar 

  • Du Y, Zhang MS, Hong J, Shen Y, Chen Q, Yin Z (2003) Structural and optical properties of nanophase zinc oxide. Appl Phys A 76:171–176

    Article  CAS  ADS  Google Scholar 

  • Du CL, Gu ZB, Lu MH, Wang J, Zang ST, Zhao J, Cheng GX, Heng H, Chen YF (2006) Raman spectroscopy of (Mn, Co)-codoped ZnO films. J Appl Phys 99:123515

    Article  ADS  Google Scholar 

  • Egerton L, Dillon DM (1959) Piezoelectric and dielectric properties of ceramics in the system potassium–sodium niobate. J Am Ceram Soc 42:438–442

    Article  CAS  Google Scholar 

  • Fernandez JF, Moure C, Villegas M, Durán P, Kosec M, Drazic G (1998) Compositional fluctuations and properties of fine-grained acceptor-doped PZT ceramics. J Eur Ceram Soc 18:1695–1705

    Article  CAS  Google Scholar 

  • Harris MJ, Salje EKH (1992) The incommensurate phase of sodium carbonate: an infrared absorption study. J Phys Cond Matter 4:4399–4408

    Article  CAS  ADS  Google Scholar 

  • Heda PK, Dollimore D, Alexander KS, Chen D, Law E, Bicknell P (1995) A method of assessing solid state reactivity illustrated by thermal decomposition experiments on sodium bicarbonate. Thermochim Acta 255:255–272

    Article  CAS  Google Scholar 

  • Kakimoto K, Akao K, Guo Y, Ohsato H (2005a) Raman Scattering Study of Piezoelectric (Na0.5K0.5)NbO3-LiNbO3 ceramics. Jpn J Appl Phys 44:7064–7067

    Article  CAS  ADS  Google Scholar 

  • Kakimoto K, Masuda I, Ohsato H (2005b) Lead-free KNbO3 piezoceramics synthesized by pressure-less sintering. J Eur Ceram Soc 25:2719–2722

    Article  CAS  Google Scholar 

  • Liu WL, Xia HR, Han H, Wang XQ (2004) Structural, morphology and electrical studies of Sm-modified bismuth titanate thin films on Si (100). J Solid State Chem 177:3021–3027

    Article  CAS  ADS  Google Scholar 

  • Matsubara M, Yamaguchi T, Sakamoto W, Kikuta K, Yogo T, Hirano S (2005) Processing and piezoelectric properties of lead-free (K, Na) (NbTa)O3 ceramics. J Am Ceram Soc 88:1190–1196

    Article  CAS  Google Scholar 

  • Pithan C, Shiratori Y, Dornseiffer J, Haegel F-H, Magrez A, Waser R (2005) Microemulsion mediated synthesis of nanocrystalline (Kx, Na1-x)NbO3 powders. J Cryst Growth 280:191–200

    Article  CAS  ADS  Google Scholar 

  • Rojac T, Kosec M, Šegedin P, Malič B, Holc J (2006) The formation of a carbonato complex during the mechanochemical treatment of a Na2CO3–Nb2O5 mixture. Solid State Ion 177:2987–2995

    Article  CAS  Google Scholar 

  • Rubio-Marcos F, Ochoa P, Fernandez JF (2007) Sintering and properties of lead-free (K, NaLi)(Nb, Ta, Sb)O3 ceramics. J Eur Ceram Soc 27:4125–4129

    Article  CAS  Google Scholar 

  • Rubio-Marcos F, Quesada A, García MA, Bañares MA, Fierro JLG, Martín-Gonzalez MS, Costa-Krämer JL, Fernández JF (2009a) Some clues about the interphase reaction between ZnO and MnO2 oxides. J Solid State Chem 182:1211–1216

    Article  CAS  ADS  Google Scholar 

  • Rubio-Marcos F, Navarro-Rojero MG, Romero JJ, Marchet P, Fernandez JF (2009b) Piezoceramic properties as a function of the structure in the (K, Na, Li)(Nb, Ta, Sb)O3. IEEE Trans Ultrason Ferroelectr Freq Control 56(9):1835–1842

    Article  PubMed  Google Scholar 

  • Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T, Nakamura M (2004) Lead-free piezoceramics. Nature (Lond) 432:84–87

    Article  CAS  ADS  Google Scholar 

  • Shiratori Y, Magred A, Pithan C (2004) Phase transformation of KNaNb2O6 induced by size effect. Chem Phys Lett 391:288–292

    Article  CAS  ADS  Google Scholar 

  • Shiratori Y, Pithan C, Dornseiffer J, Waser R (2007a) Raman scattering studies on nanocristalline BaTiO3 part I- isolated particles and aggregates. J Raman Spectrosc 38:1288–1299

    Article  CAS  ADS  Google Scholar 

  • Shiratori Y, Magred A, Fischer W, Pithan C, Waser R (2007b) Temperature induced phase transition in micro-, submicro- and nanocrystalline NaNbO3. J Phys Chem 111:18493–18502

    Google Scholar 

  • Vela E, Peiteado M, García F, Caballero AC, Fernández JF (2007) Sintering behaviour of steatite materials with barium carbonates flux. Ceram Int 33:1325–1329

    Article  CAS  Google Scholar 

  • Wang C, Hou Y, Ge H, Zhu M, Wang H, Yan H (2008) Sol-gel and characterization of lead-free LNKN nanocrystalline powder. J Cryst Growth 310:4635–4639

    Article  CAS  ADS  Google Scholar 

  • Wu J, Xiao D, Wang Y, Zhu J, Yu P, Jiang Y (2007) Compositional dependence of phase structure and electrical properties in (K0.42Na0.58)NbO3-LiSbO3 lead-free ceramics. J Appl Phys 102:114113

    Article  ADS  Google Scholar 

  • Zhen Y, Li P-F (2006) Normal sintering of (K, Na)NbO3-based ceramics: influence of sintering temperature on densification, microstructure, and electrical properties. J Am Ceram Soc 89(12):3669–3675

    Article  CAS  Google Scholar 

  • Zuo RZ, Fang XS, Ye C (2007) Phase structures and electrical properties of new lead-free (Na0.5K0.5)NbO3–(Bi0.5Na0.5)TiO3 ceramics. Appl Phys Lett 90:092904

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors express their thanks to the CICYT projects MAT2007-66845-C02-01 and to the MAGIN project PIF2006-60f0121 for their financial support. F. Rubio-Marcos thanks the FPI-CAM-FSE program for the research grant. Dr. J. J. Romero is indebted to CSIC for a “Junta de Ampliación de Estudios” contract (ref. JAEDOC087).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. J. Romero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rubio-Marcos, F., Romero, J.J. & Fernandez, J.F. Effect of the temperature on the synthesis of (K,Na)NbO3-modified nanoparticles by a solid state reaction route. J Nanopart Res 12, 2495–2502 (2010). https://doi.org/10.1007/s11051-009-9817-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-009-9817-5

Keywords

Navigation