Skip to main content

RETRACTED ARTICLE: Design and surface modification of potential luminomagnetic nanocarriers for biomedical applications

This article was retracted on 19 August 2021

This article has been updated

Abstract

Targeted delivery of therapeutics possesses the potential to localize therapeutic agents to a specific tissue as a mechanism to enhance treatment efficacy and mitigate side effects. Moeities that combine imaging and therapeutic modalities in a single macromolecular construct may confer advantages in the development and applications of nanomedicine. Here is an insight into the synthesis of luminomagnetic (luminescent and magnetic, simultaneously) nanocarriers of ZnO:Fe, synthesized by a simple co-precipitation method and surface modified by the ligand folate. This functionalized luminomagnetic nanocarrier system is a bioconjugation approach which combines the specificity of folate receptors on cancer cells with the excellent optical and magnetic properties of the nanoparticles so as to develop biocompatible molecular imaging agents, drug delivery systems, and hyperthermia agents. The vibrating sample magnetometer (VSM) studies showed clear hysteresis loops having coercivity 5.1 mT with corresponding magnetization of remanence 7.6 × 10−3 emu/g, indicating strong magnetic character of the samples. X-ray diffraction (XRD) and transmission electron microscopy (TEM) measurements show that these nanoparticles are spherical with 6–9 nm size and hence are quite appropriate for in vivo applications as well. The immobilization of folic acid was confirmed by fourier transform infrared (FTIR) analysis. All these properties make these luminomagnetic nanocarriers one of the most feasible candidates for folate receptor-mediated biomedical applications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Change history

References

  1. Aktaş Y, Yemisci M, Andrieux K, Gürsoy RN, Alonso MJ, Megia EF, Carballal RN, Quiñoá E, Riguera R, Sargon MF, Çelik HH, Demir AS, Hıncal AA, Dalkara T, Çapan Y, Couvreur P (2005) Development and brain delivery of Chitosan-PEG nanoparticles functionalized with the monoclonal antibody OX26. Bioconjugate Chem 16(6):1503–1511

    Article  Google Scholar 

  2. Alexiou C, Arnold W, Klein RJ, Parak FG, Hulin P, Bergemann C, Erhardt W, Wagenpfeil S, Lübbe AS (2000) Locoregional cancer treatment with magnetic drug targeting. Cancer Res 60:6641–6648

    CAS  Google Scholar 

  3. Bulte JW, Hoekstra Y, Kamman RL, Magin RL, Webb AG, Briggs RW, Go KG, Hulstaert CE, Miltenyi S, The TH (1992) Specific MR imaging of human lymphocytes by monoclonal antibody-guided dextran-magnetite particles. Magn Reson Med 25:148–157

    CAS  Article  Google Scholar 

  4. Gabizon A, Horowitz AT, Goren D, Tzemach D, Mandelbaum-Shavit F, Qazen MM, Zalipsky S (1999) Targeting folate receptor with folate linked to extremities of poly(ethylene glycol)-grafted liposomes: in vitro studies. Bioconjugate Chem 10:289–298

    CAS  Article  Google Scholar 

  5. Jaffer FA, Weissleder R (2004) Seeing within: molecular imaging of the cardiovascular system. Circ Res 94:433–445

    CAS  Article  Google Scholar 

  6. Keshari AK, Kumar M, Singh PK, Pandey AC (2007) Influence of organic polymers as capping agent on structural and optical properties of ZnS:Mn2+ and CdS nanocrystals. J Nanosci Nanotechnol 8:1–4

    Google Scholar 

  7. Kim SH, Jeong JH, Chun KW, Park TG (2005) Target-specific cellular uptake of PLGA nanoparticles coated with poly(l-lysine)-poly(ethylene glycol)-folate conjugate. Langmuir 21(19):8852–8857

    CAS  Article  Google Scholar 

  8. Kim IB, Shin H, Garcia AJ, Bunz UHF (2007) Use of a folate−PPE conjugate to image cancer cells in vitro. Bioconjugate Chem 18(3):815–820

    CAS  Article  Google Scholar 

  9. Knauth M, Egelhof T, Roth SU, Wirtz CR, Sartor K (2001) Intraoperative MR imaging increases the extent of tumor resection in patients with high-grade gliomas. Am J Neuroradiol 22:99–102

    CAS  Google Scholar 

  10. Kohler N, Sun C, Wang J, Zhang M (2005) Methotrexate-modified superparamagnetic nanoparticles and their intracellular uptake into human cancer cells. Langmuir 21(19):8858–8864

    CAS  Article  Google Scholar 

  11. Kojima C, Kono K, Maruyama K, Takagishi T (2000) Synthesis of polyamidoamine dendrimers having poly(ethylene glycol) grafts and their ability to encapsulate anticancer drugs. Bioconjugate Chem 11:910–917

    CAS  Article  Google Scholar 

  12. Leamon CP, Pastan I, Low PS (1993) Cytotoxicity of folate–Pseudomonas exotoxin conjugates toward tumor cells. Contribution of translocation domain. J Biol Chem 268:24847–24854

    CAS  Article  Google Scholar 

  13. Nayak S, Lee H, Chmielewski J, Lyon LA (2004) Folate-mediated cell targeting and cytotoxicity using thermoresponsive microgels. J Am Chem Soc 126(33):10258–10259

    CAS  Article  Google Scholar 

  14. Nitin N, Javier DJ, Kortum RR (2007) Oligonucleotide-coated metallic nanoparticles as a flexible platform for molecular imaging agents. Bioconjugate Chem 18(6):2090–2096

    CAS  Article  Google Scholar 

  15. Oh Eugene, Jung Seung-Ho, Lee Kun-Hong, Jeong Soo-Hwan, Yu SeGi, Rhee SeukJoo (2008) Vertically aligned Fe-doped ZnO nanorod arrays by ultrasonic irradiation and their photoluminescence properties. Mater Lett 62:3456–3458

    CAS  Article  Google Scholar 

  16. Oyewumi MO, Mumpe RJ (2002) Engineering tumor-targeted gadolinium hexanedione nanoparticles for potential application in neutron capture therapy. Bioconjugate Chem 13(6):1328–1335

    CAS  Article  Google Scholar 

  17. Parker N, Turk MJ, Westrick E, Lewis JD, Low PS, Leamon CP (2005) Folate receptor expression in carcinomas and normal tissues determined by a quantitative radioligand binding assay. Anal Biochem 338:284–293

    CAS  Article  Google Scholar 

  18. Santra S, Tapec R, Theodoropoulou N, Dobson J, Hebard A, Tan W (2001) Synthesis and characterization of silica-coated iron oxide nanoparticles in microemulsion: the effect of nonionic surfactants. Langmuir 17:2900–2906

    CAS  Article  Google Scholar 

  19. Schellenberger EA, Reynolds F, Weissleder R, Josephson L (2004) Surface-functionalized nanoparticle library yields probes for apoptotic cells. ChemBioChem 5:275–279

    CAS  Article  Google Scholar 

  20. Seonghoon B, Jaejin S, Sangwoo L (2007) Improvement of the optical properties of ZnO nanorods by Fe doping. Physica B 399:101–104

    Article  Google Scholar 

  21. Sharma PK, Dutta RK, Kumar M, Singh PK, Pandey AC (2009a) Luminescence studies and formation mechanism of symmetrically dispersed ZnO quantum dots embedded in SiO2 matrix. J Lumin 129:605–610

    CAS  Article  Google Scholar 

  22. Sharma PK, Dutta RK, Kumar M, Singh PK, Pandey AC, Singh VN (2009b) Highly stabilized monodispersed citric acid capped ZnO:Cu2+ nanoparticles: synthesis and characterization for their applications in white light generation from UV LEDs, IEEE TNANO. Article ID: TNANO-00048-2009 (in press)

  23. Sharma PK, Dutta RK, Pandey AC, Layek S, Verma HC (2009c) Effect of iron doping concentration on magnetic properties of ZnO nanoparticles. J Magn Magn Mater 321:2587–2591

    CAS  Article  Google Scholar 

  24. Sirotnak FM, Tolner B (1999) Carrier-mediated membrane transport of folates in mammalian cells. Annu Rev Nutr 19:91–122

    CAS  Article  Google Scholar 

  25. Stefflova K, Li H, Chen J, Zheng G (2007) Peptide-based pharmacomodulation of a cancer-targeted optical imaging and photodynamic therapy agent. Bioconjugate Chem 18(2):379–388

    CAS  Article  Google Scholar 

  26. Stella B, Arpicco S, Peracchia MT, Desmaële D, Hoebeke J, Renoir M, D’Angelo J, Cattel L, Couvreur P (2000) Design of folic acid-conjugated nanoparticles for drug targeting. J Pharm Sci 89:1452–1464

    CAS  Article  Google Scholar 

  27. Sudimack J, Lee RJ (2000) Targeted drug delivery via the folate receptor. Adv Drug Deliv Rev 41:147–162

    CAS  Article  Google Scholar 

  28. Voltairas PA, Fotiadis DI, Michalis LK (2002) Hydrodynamics of magnetic drug targeting. J Biomech 35:813–821

    CAS  Article  Google Scholar 

  29. Wilfried A, Nowak H (1998) Magnetism in medicine. Wiley-VCH, Weinheim, Germany

    Google Scholar 

  30. Xiong Y, Zhang LZ, Tang G, Zhang G, Chen WJ (2004) ZnO nanoparticles included within all-silica MCM-41: preparation and spectroscopic studies. J Lumin 110:17–22

    CAS  Article  Google Scholar 

  31. Yang PH, Sun X, Chiu JF, Sun H, He QY (2005) Transferrin-mediated gold nanoparticle cellular uptake. Bioconjugate Chem 16(3):494–496

    CAS  Article  Google Scholar 

  32. Zhang N, Chittasupho C, Duangrat C, Siahaan TJ, Berkland C (2008a) PLGA nanoparticle#peptide conjugate effectively targets intercellular cell-adhesion molecule-1. Bioconjugate Chem 19:145–152

    CAS  Article  Google Scholar 

  33. Zhang B, Zhou SM, Wang HW, ZuLiang DU (2008b) Raman scattering and photoluminescence of Fe-doped ZnO nanocantilever arrays. Chin Sci Bull 53:1639–1643

    Google Scholar 

Download references

Acknowledgments

Authors are thankful to DST and CSIR, India for supporting “Nanophosphor Application Centre” under ‘IRHPA’, ‘Nano-Mission’, and ‘NMITLI’ schemes.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ranu K. Dutta.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dutta, R.K., Sharma, P.K. & Pandey, A.C. RETRACTED ARTICLE: Design and surface modification of potential luminomagnetic nanocarriers for biomedical applications. J Nanopart Res 12, 1211–1219 (2010). https://doi.org/10.1007/s11051-009-9801-0

Download citation

Keywords

  • Magnetic nanoparticles
  • Folic acid
  • Surface modification
  • Bioimaging
  • Hyperthermia
  • Targeted drug delivery
  • Nanomedicine