Skip to main content
Log in

Growth and characterization of boron nitride nanotubes having novel morphologies using mechanothermal process

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

We report an effective approach to synthesize boron nitride (BN) nanotubes having novel morphologies employing a mechanothermal process. In this process, a precursor containing B–N–O–Fe was first synthesized by ball milling a 1:1 mixture of elemental boron (B) and hexagonal boron nitride (hBN) and iron oxide (about 6 wt%) for about 36 h in the presence of ammonia gas. BN nanotubes were grown by annealing this precursor in ammonia gas atmosphere at 1,250–1,350 °C for about 3 h. The nanotubes produced using this technique were found to evolve structures having Y-junctions and bamboo-like morphology with an average diameter of about 30–100 nm and length several microns. A few nanotubes with partially folded in diameter were also found to co-exist along with other nanotubes. These nanotubes were characterized using various techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), and Raman spectroscopy. The growth mechanism for the formation of these novel morphologies in BN nanotubes is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bae SY, Seo HW, Park J, Choi YS, Park JC, Lee SY (2003) Boron nitride nanotubes synthesized in the temperature range 1000–1200°C. Chem Phys Lett 374:534–541

    Article  CAS  Google Scholar 

  • Chen Y, Chadderton LT, Williams JS, Gerald JF (1999) A solid-state process for formation of boron nitride nanotubes. Appl Phys Lett 74:2960–2962

    Article  CAS  ADS  Google Scholar 

  • Chen Y, Conway M, Williams JS, Zou J (2002) Large-quantity production of high-yield boron nitride nanotubes. J Mater Res 17:1896–1899

    Article  CAS  ADS  Google Scholar 

  • Chen Y, Zou J, Campbell SJ, Caer GL (2004) Boron nitride nanotubes: pronounced resistance to oxidation. Appl Phys Lett 84:2430–2432

    Article  CAS  ADS  Google Scholar 

  • Chen YJ, Chi B, Mahon DC, Chen Y (2006) An effective approach to grow boron nitride nanowires directly on stainless-steel substrates. Nanotechnology 17:2942–2946

    Article  CAS  ADS  Google Scholar 

  • Chen H, Chen Y, Lin Y, Zhang H, Li CP, Liu Z, Ringer SP, Williams JS (2008) Rare-earth doped boron nitride nanotubes. Mater Sci Eng B 146:189–192

    Article  CAS  Google Scholar 

  • Chico L, Crespi VH, Benedict LX, Louie SG, Cohen ML (1996) Pure carbon nanoscale devices: nanotube heterjunctions. Phys Rev Lett 76:971–974

    Article  CAS  PubMed  ADS  Google Scholar 

  • Chopra NG, Zettl A (1998) Measurement of elastic modulus of a multiwall boron nitride nanotube. Solid State Commun 105:297–300

    Article  CAS  ADS  Google Scholar 

  • Chopra NG, Luyken RJ, Cherrey K, Crespi VH, Cohen ML, Louie SG, Zettl A (1995) Boron nitride nanotubes. Science 269:966–967

    Article  CAS  PubMed  ADS  Google Scholar 

  • Dai J, Xu L, Fang Z, Sheng D, Guo Q, Ren Z, Wang K, Qian Y (2007) A convenient catalytic approach to synthesize straight boron nitride nanotubes using synergic nitrogen source. Chem Phys Lett 440:253–258

    Article  CAS  ADS  Google Scholar 

  • Deepak FL, Vinod CP, Mukhopadhyay K, Govindaraj A, Rao CNR (2002) Boron nitride nanotubes and nanowires. Chem Phys Lett 353:345–352

    Article  CAS  ADS  Google Scholar 

  • Demcyzk BG, Cummings J, Zettl A, Ritchie RO (2001) Structure of boron nitride nanotubes. Appl Phys Lett 78:2772–2774

    Article  ADS  Google Scholar 

  • Dunlap BI (1994) Relating carbon nanotubes. Phys Rev B 49:5643–5650

    Article  CAS  ADS  Google Scholar 

  • Fengqiu JI, Chuanbao C, Hong X, Ziguang Y (2006) Mechanosynthesis of boron nitride nanotubes. Chin J Chem Eng 14:389–393

    Article  Google Scholar 

  • Gerald JFD, Chen Y, Conway M (2003) Nanotube growth during annealing of mechanically milled boron. Appl Phys A 76:107–110

    Article  ADS  Google Scholar 

  • Golberg D, Bando Y, Eremets M, Takemura K, Kurashima K, Yusa H (1966) Nanotubes in boron nitride laser heated at high pressure. Appl Phys Lett 69:2045–2047

    Article  ADS  Google Scholar 

  • Huo KF, Hu Z, Fu JJ, Xu H, Wang XZ, Chen Y, Li YN (2003) Microstructure and growth model of periodic spindle-unit BN nanotubes by nitriding Fe-B nanoparticles with nitrogen/ammonia mixture. J Phys Chem B 107:11316–11320

    Article  CAS  Google Scholar 

  • Jhi SH (2006) Activated boron nitride nanotubes: a potential material for room temperature hydrogen storage. Phys Rev B 74:155424[1]–155424[4]

  • Koi N, Oku T, Nishijima M (2005) Fe nanowire encapsulated in boron nitride nanotubes. Solid State Commun 136:342–345

    Article  CAS  ADS  Google Scholar 

  • Kumar S, Parashar A, Rauthan CMS, Singhal SK, Dixit PN, Singh BP, Bhattacharyya R (2008) Morphological observation of Y and T junctions in nanostructured boron nitride thin films. J Nanosci Nanotechnol 8:3526–3531

    Article  CAS  PubMed  Google Scholar 

  • Li L, Li CP, Chen Y (2008) Synthesis of boron nitride nanotubes, bamboos and nanowires. Phys E 40:2513–2516

    Article  CAS  Google Scholar 

  • Ma RZ, Bando Y, Sato T, Kurashima K (2001) Growth, morphology and structure of boron nitride nanotubes. Chem Mater 13:2965–2971

    Article  CAS  Google Scholar 

  • Nemanich RJ, Solin SA, Martin RM (1981) Light scattering study of boron nitride microcrystals. Phys Rev B 23:6348–6356

    Article  CAS  ADS  Google Scholar 

  • Oku T, Koi N, Suganuma K (2008) Synthesis and nanostructure of boron nitride nanotubes grown from iron-evaporated boron. Diam Relat Mater 17:1805–1807

    Article  CAS  Google Scholar 

  • Saito R, Dresselhaus G, Dresselhaus MS (1996) Tunneling conductance of connected carbon nanotubes. Phys Rev B 53:2044–2050

    Article  CAS  ADS  Google Scholar 

  • Salazar JJV, Sandoval EM, Herrera JMR, Lupo F, Ruhle M, Terrones H, Terrones M (2005) Synthesis and state of art characterization of BN bamboo-like nanotubes: evidence of a root growth mechanism catalyzed by Fe. Chem Phys Lett 416:342–348

    Article  ADS  Google Scholar 

  • Singhal SK, Srivastava AK, Pant RP, Halder SK, Singh BP, Gupta Anil K (2008) Synthesis of boron nitride nanotubes employing mechanothermal process and its characterization. J Mater Sci 43:5243–5250

    Article  CAS  ADS  Google Scholar 

  • Tang CC, Fan SS, Dang HY, Li P, Liu YM (2000) Simple and high-yield method for synthesizing single-crystal GaN nanowires. Appl Phys Lett 77:961–963

    Google Scholar 

  • Tang CC, de la Chapelle ML, Li P, Liu YM, Dang HY, Fan SS (2001) Catalytic growth of nanotube and nanobamboo structures of boron nitride. Chem Phys Lett 342:492–496

    Article  CAS  ADS  Google Scholar 

  • Tang CC, Bando Y, Ding X, Qi S, Golberg D (2002a) Catalyzed collapse and enhanced hydrogen storage of BN nanotubes. J Am Chem Soc 124:14550–14551

    Article  CAS  PubMed  Google Scholar 

  • Tang CC, Bando Y, Sato T (2002b) Catalytic growth of boron nitride nanotubes. Chem Phys Lett 362:185–189

    Article  CAS  ADS  Google Scholar 

  • Tang CC, Bando Y, Sato T, Kurashima K (2002c) A novel precursor for the synthesis of pure boron nitride nanotubes. Chem Commun 12:1290–1291

    Article  Google Scholar 

  • Tang DM, Liu C, Cheng HM (2007) Controlled synthesis of quasi-one dimensional boron nitride nanostructures. J Mater Res 22:2809–2816

    Article  CAS  ADS  Google Scholar 

  • Terao T, Bando Y, Mitome M, Kurishima K, Zhi CY, Tang CC, Golberg D (2008) Effective synthesis of surface-modified boron nitride nanotubes and related nanostructures and their hydrogen uptake. Phys E 40:2551–2555

    Article  CAS  Google Scholar 

  • Xiao Y, Yan XH, Cao JX, Ding JW, Mao YL, Xiang J (2004) Specific heat and quantized thermal conductance of single-walled boron nitride nanotubes. Phys Rev B 69:205415 [1]–205415[5]

    Google Scholar 

  • Yao Z, Postma HWCh, Balents L, Dekker C (1999) Carbon nanotubes intramolecular junctions. Nature 402:273–276

    Article  CAS  ADS  Google Scholar 

  • Zhang J, Li Z, Xu J (2005) Formation and structure of boron nitride nanotubes. J Mater Sci Technol 21:128–130

    Google Scholar 

  • Zhi C, Bando Y, Tang C, Golberg D (2005) Effective precursor for high yield of pure boron nitride nanotubes. Solid State Commun 135:67–70

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Director, National Physical Laboratory, New Delhi for his permission to publish the results reported in this article. Thanks are also due to Ms. Arpita Vajpayee and Mr. K.N. Sood for their help in XRD and SEM measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil Kumar Singhal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singhal, S.K., Srivastava, A.K., Dilawar, N. et al. Growth and characterization of boron nitride nanotubes having novel morphologies using mechanothermal process. J Nanopart Res 12, 2201–2210 (2010). https://doi.org/10.1007/s11051-009-9786-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-009-9786-8

Keywords

Navigation