Journal of Nanoparticle Research

, Volume 12, Issue 2, pp 513–519 | Cite as

Functionalization of carbon encapsulated iron nanoparticles

  • Arthur Taylor
  • Yulia Krupskaya
  • Sara Costa
  • Steffen Oswald
  • Kai Krämer
  • Susanne Füssel
  • Rüdiger Klingeler
  • Bernd Büchner
  • Ewa Borowiak-Palen
  • Manfred P. Wirth
Research Paper

Abstract

Carbon-encapsulated magnetic nanoparticles are a new class of materials where the core magnetic nanoparticle is protected from reactions with its environment by graphite shells. Having a structure similar to carbon nanotubes, these nanoparticles could be potentially functionalized using methods which are already applied to those structures. We present the effects of acidic treatments based on HCl, HNO3, and H2SO4 on these nanoparticles highlighting the impact on their magnetic and surface properties. We show that acidic treatments based on HNO3 can be successfully applied for the generation of carboxylic groups on the surface of the nanoparticles. Using methylamine as a model, we demonstrate that these functional groups can be used for further functionalization with amino-containing biomolecules via diimide-activated amidation.

Keywords

Magnetic nanoparticles Functionalization Chemical treatment Diimide-activated amidation Nanomedicine 

References

  1. Ando B, Ascia A, Baglio S, Pitrone N (2006) Development of novel ferrofluidic pumps. In: Engineering in Medicine and Biology Society EMBS 2006. 28th Annual International Conference of the IEEE, pp 2828–2831Google Scholar
  2. Datsyuk V, Kalyva M, Papagelis K, Parthenios J, Tasis D, Siokou A, Kallitsis I, Galiotis C (2008) Chemical oxidation of multiwalled carbon nanotubes. Carbon 46:833–840CrossRefGoogle Scholar
  3. El-Gendy AA, Ibrahim EMM, Khavrus VO, Krupskaya Y, Hampel S, Leonhardt A, Büchner B, Klingeler R (2009) The synthesis of carbon coated Fe, Co and Ni nanoparticles and an examination of their magnetic properties. Carbon 47:2821–2828Google Scholar
  4. Flahaut E, Agnoli F, Sloan J, O’Connor C, Green MLH (2002) CCVD synthesis and characterization of cobalt-encapsulated nanoparticles. Chem Mat 14:2553–2558CrossRefGoogle Scholar
  5. Gao Y, Kyratzis I (2008) Covalent immobilization of proteins on carbon nanotubes using the cross-linker 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide: a critical assessment. Bioconjugate Chem 19:1945–1950CrossRefGoogle Scholar
  6. Graham DL, Ferreira HA, Freitas PP (2004) Magnetoresistive-based biosensors and biochips. Trends Biotechnol 22:455–462CrossRefPubMedGoogle Scholar
  7. Grass RN, Athanassiou EK, Stark WJ (2007) Covalently functionalized cobalt nanoparticles as a platform for magnetic separations in organic synthesis. Angew Chem Int Ed 46:4909–4912CrossRefGoogle Scholar
  8. Hirsch A, Vostrowsky O (2005) Functionalization of carbon nanotubes. Top Curr Chem 245:193–237Google Scholar
  9. Huang W, Taylor S, Fu K, Lin Y, Zhang D, Hanks TW, Rao AM, Sun Y-P (2002) Attaching proteins to carbon nanotubes via diimide-activated amidation. Nano Lett 2:311–314CrossRefADSGoogle Scholar
  10. Jiang K, Schadler LS, Siegel RW, Zhang X, Zhang H, Terrones M (2004) Protein immobilization on carbon nanotubes via a two-step process of diimide-activated amidation. J Mater Chem 14:37–39CrossRefGoogle Scholar
  11. Jiao J, Seraphin S (1998) Carbon encapsulated nanoparticles of Ni, Co, Cu, and Ti. J Appl Phys 83:2442–2448CrossRefADSGoogle Scholar
  12. Lim SK, Chung KJ, Kim Y-H, Kim CK, Yoon CS (2004) Synthesis of iron oxide nanoparticles in a polyimide matrix. J Colloid Interface Sci 273:517–522CrossRefPubMedGoogle Scholar
  13. Lu A-H, Salabas EL, Schüth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed 46:1222–1244CrossRefGoogle Scholar
  14. Ma Y, Hu Z, Huo K, Lu Y, Hu Y, Liu Y, Hu J, Chen Y (2005) A practical route to the production of carbon nanocages. Carbon 43:1667–1672CrossRefGoogle Scholar
  15. Ma Y, Hu Z, Yu L, Hu Y, Yue B, Wang X, Chen Y, Lu Y, Liu Y, Hu J (2006) Chemical functionalization of magnetic carbon-encapsulated nanoparticles based on acid oxidation. J Phys Chem B 110:20118–20122CrossRefPubMedGoogle Scholar
  16. Maruyama H, Yoshimura SH, Akita S, Nagataki A, Nakayama Y (2007) Covalent attachment of protein to the tip of a multiwalled carbon nanotube without sidewall decoration. J Appl Phys 102:094701–094705CrossRefADSGoogle Scholar
  17. Pirlot C, Willems I, Fonseca A, Nagy JB, Delhalle J (2002) Preparation and characterization of carbon nanotube/polyacrylonitrile composites. Adv Eng Mater 4:109–114CrossRefGoogle Scholar
  18. Qiu J, Li Y, Wang Y, An Y, Zhao Z, Zhou Y, Li W (2004) Preparation of carbon-coated magnetic iron nanoparticles from composite rods made from coal and iron powders. Fuel Process Technol 86:267–274CrossRefGoogle Scholar
  19. Shubayev VI, Pisanic TR, Jin S (2009) Magnetic nanoparticles for theragnostics. Adv Drug Deliv Rev 61:467–477CrossRefPubMedGoogle Scholar
  20. Si P-Z, Zhang Z-D, Geng D-Y, You C-Y, Zhao X-G, Zhang W-S (2003) Synthesis and characteristics of carbon-coated iron and nickel nanocapsules produced by arc discharge in ethanol vapor. Carbon 41:247–251CrossRefGoogle Scholar
  21. Tagmatarchis N, Prato M (2004) Functionalization of carbon nanotubes via 1,3-dipolar cycloadditions. J Mater Chem 14:437–439CrossRefGoogle Scholar
  22. Wrobel N, Schinkinger M, Mirsky VM (2002) A novel ultraviolet assay for testing side reactions of carbodiimides. Anal Biochem 305:135–138CrossRefPubMedGoogle Scholar
  23. Xu Z, Hu P, Wang S, Wang X (2008) Biological functionalization and fluorescent imaging of carbon nanotubes. Appl Surf Sci 254:1915–1918CrossRefADSGoogle Scholar
  24. Yavuz CT, Mayo JT, Yu WW, Prakash A, Falkner JC, Yean S, Cong L, Shipley HJ, Kan A, Tomson M, Natelson D, Colvin VL (2006) Low-field magnetic separation of monodisperse Fe3O4 nanocrystals. Science 314:964–967CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Arthur Taylor
    • 1
    • 2
  • Yulia Krupskaya
    • 2
  • Sara Costa
    • 3
  • Steffen Oswald
    • 2
  • Kai Krämer
    • 1
  • Susanne Füssel
    • 1
  • Rüdiger Klingeler
    • 2
  • Bernd Büchner
    • 2
  • Ewa Borowiak-Palen
    • 3
  • Manfred P. Wirth
    • 1
  1. 1.Department of Urology, Medical FacultyDresden University of TechnologyDresdenGermany
  2. 2.Institute for Solid State and Materials Research (IFW)DresdenGermany
  3. 3.KnowMatTech, West Pomeranian University of TechnologySzczecinPoland

Personalised recommendations