Journal of Nanoparticle Research

, Volume 12, Issue 6, pp 2081–2092 | Cite as

The effects of vacuum annealing on the structure and surface chemistry of iron:nickel alloy nanoparticles

  • Michelle Dickinson
  • Thomas B. Scott
  • Richard A. Crane
  • Olga Riba
  • Robert J. Barnes
  • Gareth M. Hughes
Research Paper


In order to increase the longevity of contaminant retention on the particle surface, a method is sought to improve the corrosion resistance of bimetallic iron nickel nanoparticles (INNP) used for the remediation of contaminated water, and thereby extend their industrial lifetime. A multi-disciplinary approach was used to investigate changes induced by vacuum annealing (<5 × 10−8 mbar) at 500 °C on the bulk and surface chemistry of INNP. The particle size was determined to increase significantly as a result of annealing and the thickness of the surface oxide increased by 50%. BET analysis recorded a decrease in INP surface area from 44.88 to 8.08 m2 g−1, consistent with observations from scanning electron microscopy (SEM) and transmission electron microscopy (TEM) which indicated the diffusion bonding of previously discrete particles at points of contact. X-ray diffraction (XRD) confirmed that recrystallisation of the metallic cores had occurred, converting a significant fraction of initially amorphous iron nickel alloy into crystalline FeNi alloy. X-ray photoelectron spectroscopy (XPS) indicated a reduction in the proportion of surface iron oxide and a change in its stoichiometry related to annealing-induced disproportionation. This was also evidenced by an increased proportion of Fe(0) and Ni(0) to Fe- and Ni-oxides, respectively. The data also indicated the concurrent development of boron oxide at the metal surfaces, which accounts for the overall increase measured in surface oxide thickness. The improved core crystallinity and the presence of passivating impurity phases at the INNP surfaces may act to improve the corrosion resistance and reactive lifespan of the vacuum annealed INNP for environmental applications.


Iron Nickel Nanoparticles Anneal XPS Remediation of contaminated waters EHS 



We thank Dr Sean Davis of the Department of Chemistry, University of Bristol for performing the TEM analysis and Professors Geoffrey Allen and Peter Flewitt for valuable discussion.


  1. Allen GC, Curtis MT, Hooper AJ, Tucker MJ (1974) X-ray photoelectron-spectroscopy of iron-oxygen systems. Chem Soc Dalton 14:1525–1530. doi: 10.1039/dt9740001525 CrossRefGoogle Scholar
  2. Alowitz MJ, Scherer M (2002) Kinetics of nitrate, nitrite, and Cr(VI) reduction by iron metal. Environ Sci Technol 36:299–306. doi: 10.1021/es011000h CrossRefPubMedGoogle Scholar
  3. Barnes RJ, Riba O, Scott TB, Gardner MN, Jackman SA, Thompson IP (in review) Optimisation of nano-scale iron/nickel particles for the reduction of high concentration chlorinated aliphatic hydrocarbon solutionsGoogle Scholar
  4. Caceres PG, Ralph B, Allen GC, Wild RK (1989a) Sensitization of inconel 600. 1. Scanning auger and optical microscopy. Philos Mag A 59:1119–1136. doi: 10.1080/01418618908221166 CrossRefADSGoogle Scholar
  5. Caceres PG, Ralph B, Allen GC, Wild RK (1989b) Sensitization of inconel 600. 2. Analytical electron microscopy. Philos Mag A 59:1137–1162. doi: 10.1080/01418618908221167 CrossRefADSGoogle Scholar
  6. Cao JS, Elliott D, Zhang WJJ (2005) Perchlorate reduction by nanoscale iron particles. Nanopart Res 7:499–506. doi: 10.1007/s11051-005-4412-x CrossRefGoogle Scholar
  7. Cheng R, Wang JL, Zhang WX (2007) Comparison of reductive dechlorination of p-chlorophenol using Fe-0 and nanosized Fe-0. J Hazard Mater 144:334–339. doi: 10.1016/j.jhazmat.2006.10.032 CrossRefPubMedGoogle Scholar
  8. Choe S, Chang YY, Hwang KY, Khim J (2000) Kinetics of reductive denitrification by nanoscale zero-valent iron. Chemosphere 41:1307–1311. doi: 10.1016/S0045-6535(99)00506-8 CrossRefPubMedGoogle Scholar
  9. Cornell RM, Schwertmann U (2003) The iron oxides: structure, properties, reactions, occurrences and uses. Wiley-VCH, New YorkGoogle Scholar
  10. Dayta Systems Ltd c/o Interface Analysis Centre.
  11. Dehlinger AS, Pierson JF, Roman A, Bauer P (2003) Properties of iron boride films prepared by magnetron sputtering. Surf Coat Technol 174–175:331–337. doi: 10.1016/S0257-8972(03)00399-2 CrossRefGoogle Scholar
  12. Dickinson M, Scott TB (in review a) The application of zero-valent iron nanoparticles for the remediation of a uranium-contaminated waste effluent Google Scholar
  13. Dickinson M, Scott TB (in review b) The effect of vacuum annealing on the remediation abilities of iron and iron: nickel nanoparticlesGoogle Scholar
  14. Elliott DW, Zhang W (2001) Field assessment of nanoscale biometallic particles for groundwater treatment. Environ Sci Technol 35:4922–4926. doi: 10.1021/es0108584 CrossRefPubMedGoogle Scholar
  15. Ertl G, Hierl R, Knozinger H, Thiele N, Urbach HP (1980) XPS study of copper aluminate catalysts. Appl Surf Sci 5:49–64. doi: 10.1016/0378-5963(80)90117-8 CrossRefGoogle Scholar
  16. Flewitt PEJ, Wild RK (2003) Physical methods for materials characterisation. Institute of Physics Publishing Ltd, BristolCrossRefGoogle Scholar
  17. Grittini C, Malcomson M, Fernando Q, Korte N (1995) Hydrodechlorination of chlorinated ethanes by nanoscale Pd/Fe bimetallic particles. Environ Sci Technol 29:2898–2900. doi: 10.1021/es00011a029 CrossRefGoogle Scholar
  18. Grovesnor AP, Kobe BA, Biesinger MC, McIntyre NS (2004) Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surf Interface Anal 36:1564–1574. doi: 10.1002/sia.1984 CrossRefGoogle Scholar
  19. Joo SH, Feitz AJ, Sedlak DL, Waite TD (2005) Quantification of the oxidizing capacity of nanoparticulate zero-valent iron. Environ Sci Technol 39:1263–1268. doi: 10.1021/es048983d CrossRefPubMedGoogle Scholar
  20. Joyner DJ, Hercules DMJ (1980) Chemical bonding and electronic-structure of B2O3, H3BO3, and BN-ESCA, AUGER, SIMS, and SXS study. Chem Phys 72:1095–1108ADSGoogle Scholar
  21. Kanel SR, Manning B, Charlet L, Choi H (2005) Removal of arsenic(III) from groundwater by nanoscale zero-valent iron. Environ Sci Technol 39:1291–1298. doi: 10.1021/es048991u CrossRefPubMedGoogle Scholar
  22. Kenkmann T, Hörz F, Deutsch A (2005) Large meteorite impacts III. Geol. Soc. Am. Spec. Paper 384, p 293Google Scholar
  23. Krämer A, Leutenecker R, Aubertin F, Gonser U (1994) Amorphization of armco iron by boron implantation and subsequent crystallization by heat-treatment—a GEMS, X-ray and ultramicrohardness study. Hyperfine Interact 94:2367–2372. doi: 10.1007/BF02063790 CrossRefADSGoogle Scholar
  24. Li XQ, Zhang WX (2007) Sequestration of metal cations with zerovalent iron nanoparticles—a study with high resolution X-ray photoelectron spectroscopy (HR-XPS). J Phys Chem 111:6939–6946Google Scholar
  25. Lien HL, Zhang WX (1999) Transformation of chlorinated methanes by nanoscale iron particles. J Environ Eng 125:1042–1047. doi: 10.1061/(ASCE)0733-9372(1999)125:11(1042) CrossRefGoogle Scholar
  26. Lien HL, Zhang WX (2001) Nanoscale iron particles for complete reduction of chlorinated ethenes. Coll Surf A Physicochem Eng Asp 191:97–105. doi: 10.1016/S0927-7757(01)00767-1 CrossRefGoogle Scholar
  27. Lien HL, Zhang WX (2005) Hydrodechlorination of chlorinated ethanes by nanoscale Pd/Fe bimetallic particles. J Environ Eng 131:4–10. doi: 10.1061/(ASCE)0733-9372(2005)131:1(4) CrossRefGoogle Scholar
  28. Lien HL, Zhang WX (2007) Nanoscale Pd/Fe bimetallic particles: catalytic effects of palladium on hydrodechlorination. Appl Catal B Environ 77:110–116CrossRefGoogle Scholar
  29. Liu Y, Majetich SA, Tilton RD et al (2005) TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties. Environ Sci Technol 39:1338–1345. doi: 10.1021/es049195r CrossRefPubMedGoogle Scholar
  30. McIntyre NS, Zetaruk DG (1977) X-ray photoelectron spectroscopic studies of iron-oxides. Anal Chem 49:1521–1529. doi: 10.1021/ac50019a016 CrossRefGoogle Scholar
  31. McIntyre NS, Chan TC, Chen C (1990) Characterization of oxide structures formed on nickel–chromium alloy during low-pressure oxidation at 500–600-degrees-c. Oxid Met 33:457–479. doi: 10.1007/BF00666809 CrossRefGoogle Scholar
  32. Miehr R, Tratnyek PG, Bandstra JZ et al (2004) Diversity of contaminant reduction reactions by zerovalent iron: role of the reductate. Environ Sci Technol 38:139–147. doi: 10.1021/es034237h CrossRefPubMedGoogle Scholar
  33. Mondal K, Jegadeesan G, Lalvani SB (2004) Removal of selenate by Fe and NiFe nanosized particles. Ind Eng Chem Res 43:4922–4934. doi: 10.1021/ie030715l CrossRefGoogle Scholar
  34. Nefedov VI, Gati D, Dzhurinskii BF, Serguhin NP, Salyn YV (1973) X-ray electron study of oxides of elements. Zh Neorg Khim 20:2307–2314Google Scholar
  35. Nurmi JT, Tratnyek PG, Sarathy V et al (2005) Characterization and properties of metallic iron nanoparticles: spectroscopy, electrochemistry, and kinetics. Environ Sci Technol 39:1221–1230. doi: 10.1021/es049190u CrossRefPubMedGoogle Scholar
  36. Ponder SM, Darab JG, Mallouk TE (2000) Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, nanoscale zero-valent iron. Environ Sci Technol 34:2564–2569. doi: 10.1021/es9911420 CrossRefGoogle Scholar
  37. Ponder SM, Darab JG, Bucher J et al (2001) Surface chemistry and electrochemistry of supported zerovalent iron nanoparticles in the remediation of aqueous metal contaminants. Chem Mater 13:479–486. doi: 10.1021/cm000288r CrossRefGoogle Scholar
  38. Powell CJ, Erickson NE, Jach T (1981) Accurate determination of the energies of auger electrons and photo-electrons from nickel, copper, and gold. J Vac Sci Technol 20:625. doi: 10.1116/1.571409 CrossRefGoogle Scholar
  39. Riba O, Scott TB, Ragnarsdottir KV, Allen GC (2008) Reaction mechanism of uranyl in the presence of zero-valent iron nanoparticles. Geochim Cosmochim Acta 72:4047–4057. doi: 10.1016/j.gca.2008.04.041 CrossRefADSGoogle Scholar
  40. Riba O, Scott TB, Ragnarsdottir KV, Allen GC (in preparation) Reactivity comparison of Fe and FeNi nanoparticles for remediation of uranium contaminated water Google Scholar
  41. Schrick B, Blough JL, Jones AD, Mallouk TE (2002) Hydrodechlorination of trichloroethylene to hydrocarbons using bimetallic nickel–iron nanoparticles. Chem Mater 14:5140–5147. doi: 10.1021/cm020737i CrossRefGoogle Scholar
  42. Scott TB (2005) Sorption of uranium onto iron bearing minerals. PhD thesis, University of BristolGoogle Scholar
  43. Scott TB, Dickinson M, Crane RA, Riba O, Hughes GM, Allen GC (2009) The effects of vacuum annealing on the structure and surface chemistry of iron nanoparticles. J Nanopart Res. doi: 10.1007/s11051-009-9732-9
  44. Scott TB, Allen GC, Heard PJ, Randall MG (2005) Reduction of U(VI) to U(IV) on the surface of magnetite. Geochim Cosmochim Acta 69:5639–5646. doi: 10.1016/j.gca.2005.07.003 CrossRefADSGoogle Scholar
  45. Shimotori T, Nuxoll EE, Cussler EL, Arnold WA (2004) A polymer membrane containing Fe0 as a contaminant barrier. Environ Sci Technol 38:2264–2270. doi: 10.1021/es034601c CrossRefPubMedGoogle Scholar
  46. US EPA Technical Factsheet on Nickel (2000) The Water Supply (Water Quality) Regulations 2000. Accessed 2 October 2008
  47. Wang CB, Zhang WX (1997) Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ Sci Technol 31:2154–2156. doi: 10.1021/es970039c. Accessed 15 November 2008
  48. Xu Y, Zhang W (2000) Subcolloidal Fe/Ag particles for reductive dehalogenation of chlorinated benzenes. Ind Eng Chem Res 39:2238–2244. doi: 10.1021/ie9903588 CrossRefGoogle Scholar
  49. Xu J, Dozier A, Bhattacharyya D (2005) Synthesis of nanoscale bimetallic particles in polyelectrolyte membrane matrix for reductive transformation of halogenated organic compounds. J Nanopart Res 7:449–467. doi: 10.1007/s11051-005-4273-3 CrossRefGoogle Scholar
  50. Younes CM, Allen GC, Wild RK, Ralph B (1992) An auger-electron spectroscopic study of boron segregation to the grain-boundaries in nickel-base alloy inconel-690. In: 12th Scandinavian corrosion congress and Eurocorr ’92, vol II, pp 137–146Google Scholar
  51. Zhang WX (2003) Nanoscale iron particles for environmental remediation: an overview. J Nanopart Res 4:323–332. doi: 10.1023/A:1025520116015 CrossRefGoogle Scholar
  52. Zhang L, Manthiram A (1997) Chains composed of nanosize metal particles and identifying the factors driving their formation. Appl Phys Lett 70:2469–2471. doi: 10.1063/1.118859 CrossRefADSGoogle Scholar
  53. Zhang WX, Wang CB, Lien HL (1998) Treatment of chlorinated organic contaminants with nanoscale bimetallic particles. Catal Today 40:387–395. doi: 10.1016/S0920-5861(98)00067-4 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Michelle Dickinson
    • 1
  • Thomas B. Scott
    • 1
  • Richard A. Crane
    • 1
  • Olga Riba
    • 1
  • Robert J. Barnes
    • 2
  • Gareth M. Hughes
    • 3
  1. 1.Interface Analysis CentreUniversity of BristolBristolUK
  2. 2.Department of Engineering ScienceUniversity of OxfordOxfordUK
  3. 3.Department of MaterialsUniversity of OxfordOxfordUK

Personalised recommendations