Journal of Nanoparticle Research

, Volume 12, Issue 1, pp 367–372 | Cite as

Recycling dodecylamine intercalated vanadate nanotubes

  • Odair P. Ferreira
  • Antonio G. Souza Filho
  • Oswaldo L. Alves
Brief Communication


In this article, we report the thermal decomposition processes of dodecylamine intercalated vanadate nanotubes and their recycling process. Structural, vibrational, and morphological properties of the annealed samples were investigated by X-ray diffraction, infrared spectroscopy, and scanning electron microscopy, respectively. The data analysis unveiled that vanadate nanotubes (VONTs) decompose into nanoplates which is isostructural to xerogel, and finally to nanoparticle aggregates whose composition is a single V2O5 bulk phase. These aggregates can be successfully recycled for converting the residues of decomposition process into vanadate nanotubes again.


Inorganic nanotubes Thermal decomposition Intercalation Synthesis process Recycling process 


  1. Corr SA, Grossman N, Furman JD, Melot BC, Cheetham AK, Heier KR, Seshadri R (2008) Controlled reduction of vanadium oxide nanoscrolls: crystal structure, morphology, and electrical properties. Chem Mater 20:6396–6404CrossRefGoogle Scholar
  2. Hellmann I, Taschner Ch, Klingeler R, Leonhardt A, Buchner B, Knupfer M (2008) Structure and electronic properties of Li-doped vanadium oxide nanotubes. J Chem Phys 128:224701CrossRefPubMedADSGoogle Scholar
  3. Krumeich F, Muhr HJ, Niederberger M, Bieri F, Schnyder B, Nesper R (1999) Morphology and topochemical reactions of novel vanadium oxide nanotubes. J Am Chem Soc 121:8324–8331CrossRefGoogle Scholar
  4. Krusin-Elbaum L, Newns DM, Zeng H, Derycke V, Sun JZ, Sandstrom R (2004) Room-temperature ferromagnetic nanotubes controlled by electron or hole doping. Nature 431:672CrossRefPubMedADSGoogle Scholar
  5. Kweon H, Lee KW, Lee EM, Park J, Kim IM, Lee CE, Jung G, Gedanken A, Koltypin Y (2007) Effect of water intercalation on VOx layers in dodecylamine-intercalated vanadium oxide nanotubes. Phys Rev B 76:045434CrossRefADSGoogle Scholar
  6. Kweon H, Lee KW, Lee CE (2008) Photoinduced reentrant insulator–metal–insulator transitions in vanadium oxide nanotubes. Appl Phys Lett 93:043105CrossRefADSGoogle Scholar
  7. Liu XQ, Huang CM, Qiu JW, Wang YY (2006) The effect of thermal annealing and laser irradiation on the microstructure of vanadium oxide nanotubes. Appl Surf Sci 253:2747–2751CrossRefADSGoogle Scholar
  8. Muhr HJ, Krumeich F, Schonholzer UP, Bieri F, Niederberger M, Gauckler LJ, Nesper R (2000) Vanadium oxide nanotubes-A new flexible vanadate nanophase. Adv Mater 12:231CrossRefGoogle Scholar
  9. Niederberger M, Muhr HJ, Krumeich F, Bieri F, Gunther D, Nesper R (2000) Low-cost synthesis of vanadium oxide nanotubes via two novel non-alkoxide routes. Chem Mater 12:1995Google Scholar
  10. Nordlinder S, Nyholm L, Gustafsson T, Edstrom K (2006) Lithium insertion into vanadium oxide nanotubes: electrochemical and structural aspects. Chem Mater 18:495–503CrossRefGoogle Scholar
  11. Petkov V, Zavaliij PY, Lutta S, Whittingham MS, Parvanov V, Shastri S (2004) Structure beyond Bragg: study of V2O5 nanotubes. Phys Rev B 69:085410CrossRefADSGoogle Scholar
  12. Souza Filho AG, Ferreira OP, Santos EJG, Mendes Filho J, Alves OL (2004) Raman spectra in vanadate nanotubes revisited. Nano Lett 4:2099–2104CrossRefADSGoogle Scholar
  13. Spahr ME, Stoschitzki-Bitterli P, Nesper R, Haas O, Novak P (1999) Vanadium oxide nanotubes—A new nanostructured redox-active material for the electrochemical insertion of lithium. J Eletrochem Soc 146:2780–2783CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Odair P. Ferreira
    • 1
  • Antonio G. Souza Filho
    • 1
    • 2
  • Oswaldo L. Alves
    • 1
  1. 1.LQES - Laboratório de Química do Estado Sólido, Instituto de QuímicaUniversidade Estadual de Campinas—UNICAMPCampinasBrazil
  2. 2.Departamento de FísicaUniversidade Federal do CearáFortalezaBrazil

Personalised recommendations