Skip to main content
Log in

High stability of the crystalline configuration of Au nanoparticles embedded in silica under ion and electron irradiation

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Au nanoparticles (NPs) with a size in the 2–12 nm range have been grown in silica by 2 MeV Au-ion implantation and a subsequent thermal annealing in air. The as-prepared Au NPs were irradiated with 10 MeV Si ions elongating some of them. From transmission electron microscopy in Z-contrast mode, we observed a narrow size distribution of the minor axis of the deformed NPs, which presents its higher frequency around 6–7 nm and have a saturation about 9 nm. This final result agrees well with the diameter of the track formed by Si ions of 10 MeV in silica, supporting the thermal spike model, which would explain the deformation of the NPs. In this model, the NP melts and creeps along the ion track. Our results show that the NP crystallization is in the fcc structure. On the other hand, a 200 keV electron irradiation provoked roundness on the previously elongated nanoparticles. This effect was observed in situ by high-resolution transmission electron microscopy, showing additionally that, during the roundness process, the fcc structure, as well as its crystalline orientation, remain unchanged. Thus, this study shows how Au NPs embedded in silica, within this size distribution, keep the fcc bulk structure under both ion and electron irradiations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Baletto F, Ferrando R (2005) Structural properties of nanoclusters: energetic, thermodynamic, and kinetic effects. Rev Mod Phys 77:371–423

    Article  CAS  ADS  Google Scholar 

  • Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830

    Article  CAS  PubMed  ADS  Google Scholar 

  • Bosman M, Keast VJ, Watanabe M, Maasroof AI, Cortie MB (2007) Mapping surface plasmons at the nanometer scale with an electron beam. Nanotechnology 18:165505–165510

    Article  ADS  Google Scholar 

  • Bukasov R, Shumaker-Parry JS (2007) Highly tunable infrared extinction properties of gold nanocrescents. Nano Lett 7:1113–1118

    Article  CAS  PubMed  ADS  Google Scholar 

  • Cheang-Wong JC, Morales U, Oliver A, Rodríguez-Fernández L, Rickards J (2006) MeV ion beam deformation of colloidal silica particles. Nucl Instrum Methods Phys Res B 242:452–454

    Article  CAS  ADS  Google Scholar 

  • D’Orléans C, Stoquert JP, Estornuès C, Cerruti C, Grob JJ, Guille JL, Haas F, Muller D, Richard-Plouet M (2003) Anisotropy of Co nanoparticles induced by swift heavy ions. Phys Rev B 67:220101

    Article  Google Scholar 

  • De Waele R, Koenderink AF, Polman A (2007) Tunable nanoscale localization of energy on plasmon particle arrays. Nano Lett 7:2004–2008

    Article  ADS  Google Scholar 

  • Giulian R, Kluth P, Araujo LL, Sprouster DJ, Byrne AP, Cookson DJ, Ridgway MC (2008) Shape transformation of Pt nanoparticles induced by swift heavy-ion irradiation. Phys Rev B 78:125413

    Article  ADS  Google Scholar 

  • Grzelczak M, Pérez-Juste J, García de Abajo FJ, Liz-Marzán LM (2007) Optical properties of platinum-coated gold nanorods. J Phys Chem C 111:6183–6188

    Article  CAS  Google Scholar 

  • Hache F, Ricard D, Flytzanis C, Kreibig U (1988) The optical Kerr effect in small metal particles and metal colloids: the case of gold. Appl Phys A 47:347–357

    Article  ADS  Google Scholar 

  • Hofmann CE, Vasseur EJ, Sweatlock LA, Lezec HJ, García de Abajo FJ, Polman A, Atwater HA (2007) Plasmonic modes of annular nanoresonators imaged by spectrally resolved cathodoluminescence. Nano Lett 7:3612–3617

    Article  CAS  PubMed  ADS  Google Scholar 

  • Huang W, Qian W, Jain PK, El-Sayed MA (2007) The effect of plasmon field on the coherent lattice phonon oscillation in electron-beam fabricated gold nanoparticle pairs. Nano Lett 7:3227–3234

    Article  CAS  PubMed  ADS  Google Scholar 

  • Inouye H, Tanaka K, Tanahashi I, Hattori T, Nakatsuka H (2000) Ultrafast optical switching in a silver nanoparticle system. Jpn J Appl Phys 39:5132–5133

    Article  CAS  ADS  Google Scholar 

  • Kelly KL, Coronado E, Zhao LL, Shatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape and dielectric environment. J Phys Chem B 107:668–677

    Article  CAS  Google Scholar 

  • Maier SA, Kik PG, Atwater HA (2002) Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: estimation of waveguide loss. Appl Phys Lett 81:1714–1716

    Article  CAS  ADS  Google Scholar 

  • Maier SA, Kik PG, Atwater HA, Meltzer S, Harel E, Koel BE, Requicha AAG (2003) Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nat Mater 2:229–232

    Article  CAS  PubMed  ADS  Google Scholar 

  • Maillard M, Giorgio S, Pilleni MP (2003) Tuning the size of silver nanodisks with similar aspect ratios: synthesis and optical properties. J Phys Chem B 107:2466–2470

    Article  CAS  Google Scholar 

  • Mertens H, Polman A (2009) Strong luminescence quantum-efficiency enhancement near prolate metal nanoparticles: dipolar versus higher-order modes. J Appl Phys 105:044302

    Article  ADS  Google Scholar 

  • Nelayah J, Kociak M, Stéphan O, García de Abajo FJ, Tencé M, Henrard L, Taverna D, Pastoriza-Santos I, Liz-Marzán LM, Colliex C (2007) Mapping surface plasmons on a single metallic nanoparticle. Nat Phys 3:348–353

    Article  CAS  Google Scholar 

  • Oliver A, Reyes-Esqueda JA, Cheang-Wong JC, Román-Velázquez CE, Crespo-Sosa A, Rodríguez-Fernández L, Seman JA, Noguez C (2006) Controlled anisotropic deformation of Ag nanoparticles by Si ion irradiation. Phys Rev B 74:245425

    Article  ADS  Google Scholar 

  • Reyes-Esqueda JA, Torres-Torres C, Cheang-Wong JC, Crespo-Sosa A, Rodríguez-Fernández L, Noguez C, Oliver A (2008) Large optical birefringence by anisotropic silver nanocomposites. Opt Express 16:710–717

    Article  CAS  PubMed  ADS  Google Scholar 

  • Reyes-Esqueda JA, Rodríguez-Iglesias V, Silva-Pereyra HG, Torres-Torres C, Santiago-Ramírez AL, Cheang-Wong JC, Crespo-Sosa A, Rodríguez-Fernández L, López-Suárez A, Oliver A (2009) Anisotropic linear and nonlinear optical properties from anisotropy-controlled metallic nanocomposites. Opt Express 17:12849–12868

    Article  CAS  PubMed  ADS  Google Scholar 

  • Rodríguez-Iglesias V, Silva-Pereyra HG, Cheang-Wong JC, Reyes-Esqueda JA, Rodríguez-Fernández L, Crespo-Sosa A, Kellerman G, Oliver A (2008) MeV Si ion irradiation effects on the optical absorption properties of metallic nanoparticles embedded in silica. Nucl Instrum Methods Phys Res B 266:3138–3142

    Article  ADS  Google Scholar 

  • Rodríguez-Iglesias V, Silva-Pereyra HG, Torres-Torres C, Reyes-Esqueda JA, Cheang-Wong JC, Crespo-Sosa A, Rodríguez-Fernández L, López-Suárez A, Oliver A (2009) Large and anisotropic third-order nonlinear optical response from anisotropy-controlled metallic nanocomposites. Opt Commun. doi:10.1016/j.optcom.2009.07.022

  • Roorda S, van Dillen T, Polman A, Graf C, van Blaanderen A, Kooi BJ (2004) Aligned gold nanorods in silica made by ion irradiation of core-shell colloidal particles. Adv Mater 16:235–237

    Article  CAS  Google Scholar 

  • Vineyard GH (1976) Thermal spikes and activated processes. Radiat Eff Def Solids 29:245–248

    Article  CAS  Google Scholar 

  • Yamamoto N, Nakano M, Suzuki T (2006) Light emission by surface plasmons on nanostructures of metal surfaces induced by high-energy electron beams. Surf Interface Anal 38:1725–1730

    Article  CAS  Google Scholar 

  • Ziegler JF, Biersack ZP, Littmark U (1985) The stopping and range of ions in solids. Pergamon, New York

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the fruitful discussions with M. Avalos concerning the HRTEM micrographs interpretation. Also thanks are given to K. López and F. J. Jaimes for the Pelletron accelerator operation and to L. Rendón for his advices concerning the HRTEM studies. H. G. Silva-Pereyra is grateful to CONACYT for financial support. This study was partially supported by DGAPA-UNAM, through Grants No. IN103609-3 and IN108807-3, Distrito Federal project PICCT08-80 and CONACYT-Mexico, through Grant No. 80019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alicia Oliver.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silva-Pereyra, H.G., Arenas-Alatorre, J., Rodriguez-Fernández, L. et al. High stability of the crystalline configuration of Au nanoparticles embedded in silica under ion and electron irradiation. J Nanopart Res 12, 1787–1795 (2010). https://doi.org/10.1007/s11051-009-9735-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-009-9735-6

Keywords

Navigation