Investigation of airborne nanopowder agglomerate stability in an orifice under various differential pressure conditions

  • Burkhard Stahlmecke
  • Sandra Wagener
  • Christof Asbach
  • Heinz Kaminski
  • Heinz Fissan
  • Thomas A. J. Kuhlbusch
Special issue: Environmental and human exposure of nanomaterials

Abstract

The stability of agglomerates is not only an important material parameter of powders but also of interest for estimating the particle size upon accidental release into the atmosphere. This is especially important when the size of primary particles is well below the agglomerate size, which is usually the case when the size of primary particles is below 100 nm. During production or airborne transportation in pipes, high particle concentrations lead to particle coagulation and the formation of agglomerates in a size range of up to some micrometers. Binding between the primary particles in the agglomerates is usually due to van der Waals forces. In the case of a leak in a pressurized vessel (e.g. reactor, transport pipe, etc.), these agglomerates can be emitted and shear forces within the leak can cause agglomerates to breakup. In order to simulate such shear forces and study their effect on agglomerate stability within the airborne state, a method was developed where agglomerate powders can be aerosolized and passed through an orifice under various differential pressure conditions. First results show that a higher differential pressure across the orifice causes a stronger fragmentation of the agglomerates, which furthermore seems to be material dependent.

Keywords

Agglomerates Aggregates Shear forces Dispersion Binding energy Orifice flow Environment EHS 

References

  1. Anselmann R (2001) Nanoparticles and nanolayers in commercial applications. J Nanopart Res 3:329–336CrossRefGoogle Scholar
  2. Blum J (2006) Dust agglomeration. Adv Phys 55:881–947CrossRefADSGoogle Scholar
  3. Chen S-C et al (2007) Particle loss in a critical orifice. Aerosol Sci 38:935–949CrossRefGoogle Scholar
  4. Dannehl M et al (2007) Nanoparticle synthesis by gas-dynamically induced heating and quenching. European aerosol conference 2007, Salzburg, Abstract T09A039Google Scholar
  5. Fonda F et al (1999) Resuspension of particles by aerodynamic deagglomeration. Aerosol Sci Technol 30:509–529CrossRefGoogle Scholar
  6. Froeschke S, Kohler S, Weber AP, Kasper G (2003) Impact fragmentation of nanoparticle agglomerates. Aerosol Sci 34:275–287CrossRefGoogle Scholar
  7. Gnedovets AG, Kul’batskii EB, Smurov I, Flamant G (1996) Particle synthesis in erosive laser plasma in a high pressure atmosphere. Appl Surf Sci 96–98:272–279CrossRefGoogle Scholar
  8. Grzona A et al (2009) Gas-phase synthesis of non-agglomerated nanoparticles by fast gas dynamic heating and cooling. In: Hannemann K, Seiler F (eds) Shock waves, 1st edn. Springer, BerlinGoogle Scholar
  9. Hamaker HC (1937) The London—van der Waals attraction between spherical particles. Physica IV:1058–1072CrossRefADSGoogle Scholar
  10. Hinds WC (1999) Aerosol technology: properties, behavior, and measurement of airborne particles, Chap. 12: Coagulation, 2nd edn. Wiley, New YorkGoogle Scholar
  11. Kaur IP, Agrawal R (2007) Nanotechnology: a new paradigm in cosmeceuticals. Recent Pat Drug Deliv Formul 1:171–182PubMedCrossRefGoogle Scholar
  12. Kurkela JA, Brown DP, Raul J, Kaupinnen EI (2008) New apparatus for studying powder deagglomeration. Powder Technol 180:164–171CrossRefGoogle Scholar
  13. Lian G, Thornton C, Adams MJ (1993) A theoretical study of the liquid bridge forces between two rigid spherical bodies. J Colloid Interface Sci 161(1):138–147CrossRefGoogle Scholar
  14. Liz-Marzán LM (2004) Nanometals: formation and color. Mater Today 7:26–31CrossRefGoogle Scholar
  15. Maynard AD (2007) Nanotechnology: the next big thing, or much ado about nothing? Ann Occup Hyg 51:1–12PubMedCrossRefGoogle Scholar
  16. Megias-Alguacil D, Gauckler LJ (2009) Capillary forces between two solid spheres linked by a concave liquid bridge: regions of existence and forces mapping. AIChE J 55(5):1103–1109CrossRefGoogle Scholar
  17. Panyam J, Labhasetwar V (2003) Biodegradable nanoparticles for drug and gene delivery to cells and tissues. Adv Drug Deliv Rev 55:329–347PubMedCrossRefGoogle Scholar
  18. Quinten M (2001) The color of finely dispersed nanoparticles. Appl Phys B 73:317–326CrossRefADSGoogle Scholar
  19. Rabinovich YI, Madhavan SE, Moudgil BM (2005) Capillary forces between two spheres with a fixed volume liquid bridge: theory and experiment. Langmuir 21(24):10992–10997PubMedCrossRefGoogle Scholar
  20. Reeks MW, Reed J, Hall D (1988) On the resuspension of small particles by a turbulent flow. J Phys D 21:574–589CrossRefADSGoogle Scholar
  21. Russel LM, Flagan RC, Seinfeld JH (1995) Asymmetric instrument response resulting from mixing effects in accelerated DMA-CPC measurements. Aerosol Sci Technol 23:491–509CrossRefGoogle Scholar
  22. Sator N, Mechkov S, Sausset F (2008) Generic behaviours in impact fragmentation. Europhys Lett 81(44002):p1–p6Google Scholar
  23. Schulz J et al (2002) Distribution of sunscreens on skin. Adv Drug Deliv Rev 54:157–163CrossRefGoogle Scholar
  24. Seipenbusch M, Toneva P, Peukert W, Weber AP (2007) Impact fragmentation of metal nanoparticle agglomerates. Part Part Syst Charact 24:193–200CrossRefGoogle Scholar
  25. Siddiquey IA et al (2008) Control of the photocatalytic activity of TiO2 nanoparticles by silica coating with polydiethoxysiloxane. Dyes Pigments 76:754–759CrossRefGoogle Scholar
  26. Soppimath KS et al (2001) Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 70:1–20PubMedCrossRefGoogle Scholar
  27. Thornton C, Yin KK, Adams MJ (1996) Numerical simulation of the impact fracture and fragmentation of agglomerates. J Phys D 29:424–435CrossRefADSGoogle Scholar
  28. Zimmermann I, Eber M, Meyer K (2004) Nanomaterials as flow regulators in dry powders. Zeitschrift f Phys Chem 218:51–102Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Burkhard Stahlmecke
    • 1
  • Sandra Wagener
    • 1
    • 3
  • Christof Asbach
    • 1
  • Heinz Kaminski
    • 1
  • Heinz Fissan
    • 1
    • 2
  • Thomas A. J. Kuhlbusch
    • 1
    • 2
  1. 1.Institute of Energy and Environmental Technology (IUTA)Air Quality & Sustainable Nanotechnology UnitDuisburgGermany
  2. 2.Center for Nanointegration Duisburg-Essen, CeNIDEDuisburgGermany
  3. 3.Department of GeographyHumboldt UniversityBerlinGermany

Personalised recommendations