Non-covalent interaction of benzonitrile with single-walled carbon nanotubes

  • Odair P. Ferreira
  • Larissa Otubo
  • Acrisio L. Aguiar
  • Jose J. A. Silva
  • Josue Mendes Filho
  • Antonio G. Souza Filho
  • Solange B. Fagan
  • Oswaldo L. Alves
Brief Communication

Abstract

We have studied the interaction of benzonitrile with as-prepared and purified single-walled carbon nanotubes (SWCNTs). As-prepared SWCNTs, when suspended in benzonitrile, lead to a red colored dispersion which contains fragments composed mostly of amorphous carbon and carbon-coated catalyst, thus suggesting that benzonitrile is a solvent that can be used as one step of the purification process. Optical spectroscopic data (infrared, Raman, absorption) showed that purified carbon nanotubes interact weakly with benzonitrile. These experimental results are confirmed by first principles calculations that predict a very weak adsorption process through π–π interaction instead of through the free electron pair of the nitrile.

Keywords

Carbon nanotubes Carbon nanoparticles Purification process 

Supplementary material

11051_2009_9720_MOESM1_ESM.pdf (257 kb)
(PDF 257 kb)

References

  1. Ausman KD, Piner R, Lourie O, Ruoff RS, Korobov M (2000) Organic solvent dispersions of single-walled carbon nanotubes: toward solutions of pristine nanotubes. J Phys Chem B 104:8911–8915. doi:10.1021/jp002555m CrossRefGoogle Scholar
  2. Barone PW, Baik S, Heller DA, Strano MS (2005) Near-infrared optical sensors based on single-walled carbon nanotubes. Nat Mater 4:86–92. doi:10.1038/nmat1276 CrossRefPubMedADSGoogle Scholar
  3. Boys SF, Bernardi F (1970) Calculation of small molecular interactions by differences of separate total energies—some procedures with reduced errors. Mol Phys 19:553–566. doi:10.1080/00268977000101561 CrossRefADSGoogle Scholar
  4. Chen RJ, Zhang YG, Wang DW, Dai HJ (2001) Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J Am Chem Soc 123:3838–3839. doi:10.1021/ja010172b CrossRefPubMedGoogle Scholar
  5. Chen RJ, Bangsaruntip S, Drouvalakis KA, Kam NWS, Shim M, Li YM, Kim W, Utz PJ, Dai HJ (2003) Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors. Proc Natl Acad Sci USA 100:4984–4989. doi:10.1073/pnas.0837064100 CrossRefPubMedADSGoogle Scholar
  6. Fagan SB, Souza AG, Lima JOG, Mendes J, Ferreira OP, Mazali IO, Alves OL, Dresselhaus MS (2004) 1,2-dichlorobenzene interacting with carbon nanotubes. Nano Lett 4:1285–1288. doi:10.1021/nl0493895 CrossRefADSGoogle Scholar
  7. Fagan SB, Girao EC, Mendes J, Souza AG (2006) First principles study of 1,2-dichlorobenzene adsorption on metallic carbon nanotubes. Int J Quantum Chem 106:2558–2563. doi:10.1002/qua.20962 CrossRefADSGoogle Scholar
  8. Furtado CA, Kim UJ, Gutierrez HR, Pan L, Dickey EC, Eklund PC (2004) Debundling and dissolution of single-walled carbon nanotubes in amide solvents. J Am Chem Soc 126:6095–6105. doi:10.1021/ja039588a CrossRefPubMedGoogle Scholar
  9. Gotovac S, Honda H, Hattori Y, Takahashi K, Kanoh H, Kaneko K (2007) Effect of nanoscale curvature of single-walled carbon nanotubes on adsorption of polycyclic aromatic hydrocarbons. Nano Lett 7:583–587. doi:10.1021/nl0622597 CrossRefPubMedADSGoogle Scholar
  10. Hase Y, Alves OL (1994) Vibrational and AM1 study of the molecular-structure of hexakis(benzonitrile) complex-ions [M(BN)(6)](2+). Vib Spectrosc 6:225–228. doi:10.1016/0924-2031(94)85009-7 CrossRefGoogle Scholar
  11. Heller DA, Jeng ES, Yeung TK, Martinez BM, Moll AE, Gastala JB, Strano MS (2006) Optical detection of DNA conformational polymorphism on single-walled carbon nanotubes. Science 311:508–511. doi:10.1126/science.1120792 CrossRefPubMedADSGoogle Scholar
  12. Jorio A, Pimenta MA, Souza AG, Saito R, Dresselhaus G, Dresselhaus MS (2003) Characterizing carbon nanotube samples with resonance Raman scattering. New J Phys 5:139–142. doi:10.1088/1367-2630/5/1/139 CrossRefGoogle Scholar
  13. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:1133–1138. doi:10.1103/PhysRev.140.A1133 CrossRefMathSciNetADSGoogle Scholar
  14. Kong J, Franklin NR, Zhou CW, Chapline MG, Peng S, Cho KJ, Dai HJ (2000) Nanotube molecular wires as chemical sensors. Science 287:622–625. doi:10.1126/science.287.5453.622 CrossRefPubMedADSGoogle Scholar
  15. Lu J, Nagase S, Zhang XW, Wang D, Ni M, Maeda Y, Wakahara T, Nakahodo T, Tsuchiya T, Akasaka T, Gao ZX, Yu DP, Ye HQ, Mei WN, Zhou YS (2006) Selective interaction of large or charge-transfer aromatic molecules with metallic single-wall carbon nanotubes: critical role of the molecular size and orientation. J Am Chem Soc 128:5114–5118. doi:10.1021/ja058214+ CrossRefPubMedGoogle Scholar
  16. Nakashima N (2006) Solubilization of single-walled carbon nanotubes with condensed aromatic compounds. Sci Technol Adv Mater 7:609–616. doi:10.1016/j.stam.2006.08.004 CrossRefGoogle Scholar
  17. Salzmann CG, Llewellyn SA, Tobias G, Ward MAH, Huh Y, Green MLH (2007) The role of carboxylated carbonaceous fragments in the functionalization and spectroscopy of a single-walled carbon-nanotube material. Adv Mater 19:883–887. doi:10.1002/adma.200601310 CrossRefGoogle Scholar
  18. Sanchez-Portal D, Ordejon P, Artacho E, Soler JM (1997) Density-functional method for very large systems with LCAO basis sets. Int J Quantum Chem 65:453–461. doi:10.1002/(SICI)1097-461X(1997)65:5<453::AID-QUA9>3.0.CO;2-V CrossRefGoogle Scholar
  19. Souza AG, Fagan SB (2007) Functionalization of carbon nanotubes. Quim Nova 30:1695–1703. doi:10.1590/S0100-40422007000700012 Google Scholar
  20. Souza AG, Jorio A, Samsonidze GG, Dresselhaus G, Saito R, Dresselhaus MS (2003) Raman spectroscopy for probing chemically/physically induced phenomena in carbon nanotubes. Nanotechnology 14:1130–1139. doi:10.1088/0957-4484/14/10/311 CrossRefADSGoogle Scholar
  21. Tasis D, Tagmatarchis N, Bianco A, Prato M (2006) Chemistry of carbon nanotubes. Chem Rev 106:1105–1136. doi:10.1021/cr050569o CrossRefPubMedGoogle Scholar
  22. Terrones M, Souza AG, Rao AM (2008) Doped carbon nanotubes: synthesis, characterization and applications. Topics Appl Phys 111:531–566CrossRefGoogle Scholar
  23. Tournus F, Latil S, Heggie MI, Charlier JC (2005) Pi-stacking interaction between carbon nanotubes and organic molecules. Phys Rev B 71:165421. doi:10.1103/PhysRevB.71.165421 CrossRefADSGoogle Scholar
  24. Wang X, Liu Y, Qiu W, Zhu D (2002) Immobilization of tetra-tert-butylphthalocyanines on carbon nanotubes: a first step towards the development of new nanomaterials. J Mater Chem 12:1636–1639. doi:10.1039/b201447e CrossRefGoogle Scholar
  25. Woods LM, Badescu SC, Reinecke TL (2007) Adsorption of simple benzene derivatives on carbon nanotubes. Phys Rev B 75:155415. doi:10.1103/PhysRevB.75.155415 CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Odair P. Ferreira
    • 1
  • Larissa Otubo
    • 1
  • Acrisio L. Aguiar
    • 2
  • Jose J. A. Silva
    • 2
  • Josue Mendes Filho
    • 2
  • Antonio G. Souza Filho
    • 1
    • 2
  • Solange B. Fagan
    • 3
  • Oswaldo L. Alves
    • 1
  1. 1.LQES – Laboratório de Química do Estado SólidoInstituto de Química, Universidade Estadual de Campinas (UNICAMP)CampinasBrazil
  2. 2.Departamento de FísicaUFCFortalezaBrazil
  3. 3.Área de Ciências Naturais e TecnológicasCentro Universitário Franciscano (UNIFRA)Santa MariaBrazil

Personalised recommendations