Skip to main content
Log in

The thermal conductivity of alumina nanofluids in water, ethylene glycol, and ethylene glycol + water mixtures

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

We present new data on the thermal conductivity of nanofluids consisting of alumina nanoparticles dispersed in water, ethylene glycol, and ethylene glycol + water mixtures. We also demonstrate that our previously published model is able to describe the temperature, particle size, and particle volume fraction dependence of these nanofluids without any adjustable parameters, irrespective of the base fluid used (water, ethylene glycol, or water + ethylene glycol mixtures). Furthermore, we demonstrate how the model may be used to check the consistency of literature data on all alumina nanofluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

A :

Constant

d :

Average diameter of particle (nm)

k :

Thermal conductivity (W m−1 K−1)

T :

Temperature (K)

α:

Thermal diffusivity of liquid (m2 s−1)

ϕ :

Volume fraction

ξ:

Thermal conductivity enhancement

o:

Limiting value for large particles

gm:

Geometric mean

P:

Particle

l:

Liquid

References

  • Beck MP, Sun TF, Teja AS (2007) The thermal conductivity of alumina nanoparticles dispersed in ethylene glycol. Fluid Phase Equil 260:275–278. doi:10.1016/j.fluid.2007.07.034

    Article  CAS  Google Scholar 

  • Beck MP, Warrier P, Yuan Y et al (2009) The effect of particle size on the thermal conductivity of alumina nanofluids. J Nanopart Res 11:1129–1136

    Google Scholar 

  • Bleazard JG, Teja AS (1995) Thermal conductivity of electrically conducting liquids by the transient hot-wire method. J Chem Eng Data 40:732–737. doi:10.1021/je00020a003

    Article  CAS  Google Scholar 

  • Cahill DG, Ford WK, Goodson KE et al (2003) Nanoscale thermal transport. J Appl Phys 93:793–818. doi:10.1063/1.1524305

    Article  CAS  ADS  Google Scholar 

  • Choi SUS, Zhang ZG, Yu W et al (2001) Anomalous thermal conductivity enhancement in nanotube suspensions. Appl Phys Lett 79:2252–2254. doi:10.1063/1.1408272

    Article  CAS  ADS  Google Scholar 

  • Chon CH, Kihm KD, Lee SP et al (2005) Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement. Appl Phys Lett 87:153107(1–3). doi:10.1063/1.2093936

  • Das SK, Putra N, Thiesen P et al (2003) Temperature dependence of thermal conductivity enhancement for nanofluids. J Heat Transf Trans ASME 125:567–574

    Article  CAS  Google Scholar 

  • Das SK, Choi SUS, Yu W, Pradeep T (2008) Nanofluids. Wiley, Hoboken

    Google Scholar 

  • DiGuilio RM, Teja AS (1990) Thermal conductivity of poly(ethylene) glycols and their binary mixtures. J Chem Eng Data 35:117–121. doi:10.1021/je00060a005

    Article  CAS  Google Scholar 

  • Eastman JA, Choi SUS, Li S et al (1997) Enhanced thermal conductivity through the development of nanofluids. In: Proceedings of the symposium on nanophase and nanocomposite materials II, vol 457. Boston, pp 3–11

  • Eastman JA, Choi US, Li S, Soyez G, Thompson LJ, Di Mem RJ (1999) Novel thermal properties of nanostructured materials. Mater Sci Forum, 312–314:629–634

  • Eastman JA, Choi SUS, Li S et al (2001) Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl Phys Lett 78:718–720. doi:10.1063/1.1341218

    Article  CAS  ADS  Google Scholar 

  • Fang KC, Weng CI, Ju SP (2006) An investigation into the structural features and thermal conductivity of silicon nanoparticles using molecular dynamics simulations. Nanotechnology 17:3909–3914. doi:10.1088/0957-4484/17/15/049

    Article  CAS  ADS  Google Scholar 

  • Hamilton RL, Crosser OK (1962) Thermal conductivity of heterogeneous 2-component systems. Ind Eng Chem Res 1:187

    CAS  Google Scholar 

  • Kim SH, Choi SR, Kim D (2007) Thermal conductivity of metal-oxide nanofluids: Particle size dependence and effect of laser irradiation. J Heat Transf Trans ASME 129:298–307. doi:10.1115/1.2427071

    Article  CAS  MathSciNet  Google Scholar 

  • Lee S, Choi SUS, Li S, Eastman JA (1999) Measuring thermal conductivity of fluids containing oxide nanoparticles. J Heat Transf Trans ASME 121:280–289

    Article  CAS  Google Scholar 

  • Li CH, Peterson GP (2006) Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids). J Appl Phys 99:084314(1–8). doi:10.1063/1.2191571

  • Li CH, Peterson GP (2007) The effect of particle size on the effective thermal conductivity of Al2O3–water nanofluids. J Appl Phys 101:044312. doi:10.1063/1.2436472

    Article  ADS  Google Scholar 

  • Marsh KN (ed) (1987) Recommended reference materials for the realization of physicochemical properties. Blackwell Scientific Publications, Boston

    Google Scholar 

  • Maxwell JC (1892) A treatise on electricity and magnetism. Oxford University Press, London

    Google Scholar 

  • Meyer CA (ed) (1993) ASME steam tables: thermodynamic and transport properties of steam. American Society of Mechanical Engineers, New York

    Google Scholar 

  • Morrell R (1987) Handbook of properties of technical and engineering ceramics. Part 2: data reviews, Sect. I: high-alumina ceramics. Her Majesty’s Stationery Office, London, p 255

    Google Scholar 

  • Nan CW, Birringer R, Clarke DR et al (1997) Effective thermal conductivity of particulate composites with interfacial thermal resistance. J Appl Phys 81:6692–6699. doi:10.1063/1.365209

    Article  CAS  ADS  Google Scholar 

  • Prasher R, Bhattacharya P, Phelan PE (2005) Thermal conductivity of nanoscale colloidal solutions (nanofluids). Phys Rev Lett 94:025901. doi:10.1103/PhysRevLett.94.025901

    Article  PubMed  ADS  Google Scholar 

  • Prasher R, Evans W, Meakin P et al (2006) Effect of aggregation on thermal conduction in colloidal nanofluids. Appl Phys Lett 89:143119. doi:10.1063/1.2360229

    Article  ADS  Google Scholar 

  • Sun T, Teja AS (2003) Density, viscosity, and thermal conductivity of aqueous ethylene, diethylene, and triethylene glycol mixtures between 290 K and 450 K. J Chem Eng Data 48:198–202. doi:10.1021/je025610o

    Article  CAS  Google Scholar 

  • Timofeeva EV, Gavrilov AN, McCloskey JM, Tolmachev YV, Sprunt S, Lopatina LM, Selinger JV (2007) Thermal conductivity and particle agglomeration in alumina nanofluids: experiment and theory. Phys Rev E 76:061203–1–061203-16. doi:10.1103/PhysRevE.76.061203

    Article  ADS  Google Scholar 

  • Turian RM, Sung DJ, Hsu FL (1991) Thermal conductivity of granular coals, coal-water mixtures and multi-solid/liquid suspensions. Fuel 70:1157–1172. doi:10.1016/0016-2361(91)90237-5

    Article  CAS  Google Scholar 

  • Wang XW, Xu XF, Choi SUS (1999) Thermal conductivity of nanoparticle–fluid mixture. J Thermophys Heat Transf 13:474–480

    Article  CAS  Google Scholar 

  • Xie HQ, Wang JC, Xi T, Liu Y, Ai F (2002a) Dependence of the thermal conductivity of nanoparticle-fluid mixture on the base fluid. J Mat Sci Lett 21:1469–1471

    Article  CAS  Google Scholar 

  • Xie HQ, Wang JC, Xi TG et al (2002b) Thermal conductivity enhancement of suspensions containing nanosized alumina particles. J Appl Phys 91:4568–4572

    Article  CAS  ADS  Google Scholar 

  • Yoo DH, Hong KS, Hong TE et al (2007a) Thermal conductivity of Al2O3/water nanofluids. J Korean Phys Soc 51:S84–S87

    Article  CAS  Google Scholar 

  • Yoo DH, Hong KS, Yang HS (2007b) Study of thermal conductivity of nanofluids for the application of heat transfer fluids. Thermochim Acta 455:66–69. doi:10.1016/j.tca.2006.12.006

    Article  CAS  Google Scholar 

  • Yu W, Choi SUS (2003) The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model. J Nanopart Res 5:167–171. doi:10.1023/A:1024438603801

    Article  CAS  Google Scholar 

  • Yu W, France DM, Choi SUS et al (2007) Review and assessment of nanofluid technology for transportation and other applications. Argonne National Laboratory, Argonne, IL

    Google Scholar 

  • Zhang X, Gu H, Fujii M (2006a) Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles. J Appl Phys 100:044325. doi:10.1063/1.2259789

    Article  ADS  Google Scholar 

  • Zhang X, Gu H, Fujii M (2006b) Experimental study on the effective thermal conductivity and thermal diffusivity of nanofluids. Int J Thermophys 27:569–580. doi:10.1007/s10765-006-0054-1

    Article  Google Scholar 

  • Zhang X, Gu H, Fujii M (2007) Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles. Exp Therm Fluid Sci 31:593–599. doi:10.1016/j.expthermflusci.2006.06.009

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amyn S. Teja.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beck, M.P., Yuan, Y., Warrier, P. et al. The thermal conductivity of alumina nanofluids in water, ethylene glycol, and ethylene glycol + water mixtures. J Nanopart Res 12, 1469–1477 (2010). https://doi.org/10.1007/s11051-009-9716-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-009-9716-9

Keywords

Navigation