Journal of Nanoparticle Research

, Volume 12, Issue 4, pp 1439–1447 | Cite as

Synthesis of flower-like cobalt nanostructures: optimization by Taguchi design

  • K. Shojaee
  • M. Edrissi
  • H. Izadi
Research paper


In this research, flower-like cobalt nanostructures were synthesized in a solution of water and ethylene glycol under microwave radiation without using metal foils or templates for self-assembly. The synthesized nanoparticles were completely stable in free air. Size distribution and phase of nanoparticles can be controlled through the synthetic process. X-Ray Diffraction (XRD), Fourier Transform IR (FTIR), and Scanning Electron Microscopy (SEM) measurements were carried out to investigate the structural properties and to interpret the formation process of flower-like cobalt nanostructures. Size distribution and average size of particles were determined by Dynamic Laser Light Scattering (DLLS) measurements. Thermal Gravimetric Analysis (TGA) was used to investigate the thermal stability of cobalt nanoparticles. All experiments were designed to fulfill the L8 Taguchi design and data analysis was performed using MINITAB software.


Cobalt nanostructures Flower-like structures L8 Taguchi design OH ions Microwave 


  1. Chen W, Cai W, Zhang L, Wang G, Zhang L (2001) Sonochemical processes and formation of gold nanoparticles within pores of mesoporous silica. J Colloid Interface Sci 238:291–295CrossRefPubMedGoogle Scholar
  2. Erasmus WJ, Steen EV (2007) Some insights in the sonochemical preparation of cobalt nano-particles. Ultrasonics Sonochem 14:732–738CrossRefGoogle Scholar
  3. Forsman J, Tapper U, Auvinen A, Jokiniemi J (2008) Production of cobalt and nickel particles by hydrogen reduction. J Nanopart Res 10:745–759CrossRefGoogle Scholar
  4. He QJ, Huang ZL (2007) Template-directed growth and characterization of flowerlike porous carbonated hydroxyapatite spheres. Cryst Res Technol 5:460–465CrossRefGoogle Scholar
  5. Jia Y, Niu H, Wu M, Ning M, Zhu H, Chen Q (2005) Sonochemical preparation of bimetallic Co/Cu nanoparticles in aqueous solution. Mater Res Bull 40:1623–1629CrossRefGoogle Scholar
  6. Jitputti J, Rattanavoravipa T, Chuangchote S, Pavasupree S, Suzuki Y, Yoshikawa S (2009) Low temperature hydrothermal synthesis of monodispersed flower-like titanate nanosheets. Catal Commun 10:378–382CrossRefGoogle Scholar
  7. Kellner R, Mermet JM, Otto M, Widmer HM (1998) Analytical chemistry. Wiley-Vch, Weinheim, p 767Google Scholar
  8. Kobayashi Y, Horie M, Konno M, Gonzalez BR, Liz-Marzan LM (2003) Preparation and properties of silica-coated cobalt nanoparticles. J Phys Chem 107:7420–7425Google Scholar
  9. Ławecka M, Kopcewicz M, Slawska-Waniewska A, Leonowicz M, Kozubowski J, Dzhardimalieva GI, Rozenberg AS, Pomogailo AD (2002) Formation, structure and magnetic properties of polymer matrix nanocomposites processed by thermal decomposition of the Fe(III)Co(II) acrylate complex. J Nanopart Res 4:261–264CrossRefGoogle Scholar
  10. Li J, Qin Y, Kou X, He H, Song D (2004) Structure and magnetic properties of cobalt nanoplatelets. Mater Lett 58:2506–2509CrossRefGoogle Scholar
  11. Petit C, Taleb A, Pileni MP (1999) Cobalt nanosized particles organized in a 2D superlattice: synthesis, characterization, and magnetic properties. J Phys Chem 103:1805–1810Google Scholar
  12. Pol VG, Gedanken A, Moreno JC (2003) Deposition of gold nanoparticles on silica spheres: a sonochemical approach. Chem Mater 15:1111–1118CrossRefGoogle Scholar
  13. Rao CNR, Muller A, Cheetham AK (2004) The chemistry of nanomaterials: synthesis, properties and applications. Wiley-VCH, WeinheimGoogle Scholar
  14. Roy RK (2001) Design of experiments using the Taguchi approach: 16 steps to product and process improvement. Wiley, New YorkGoogle Scholar
  15. Shao H, Huang Y, Lee H, Suh YJ, Kim CO (2006) Cobalt nanoparticles synthesis from Co(CH3COO)2 by thermal decomposition. J Magn Magn Mater 304:28–30CrossRefADSGoogle Scholar
  16. Shi H, Qi L, Ma J, Wu N (2005) Architectural control of hierarchical nanobelt superstructures in catanionic reverse micelles. Adv Funct Mater 3:442–450CrossRefGoogle Scholar
  17. Skowronski JM, Wazny A (2005) Nickel foam-based composite electrodes for electrooxidation of methanol. J Solid State Electrochem 9:890–899CrossRefGoogle Scholar
  18. Song Y, Modrow H, Henry LL, Saw CK, Doomes EE, Palshin V, Hormes JCS, Kumar SR (2006) Microfluidic synthesis of cobalt nanoparticles. Chem Mater 18:2817–2827CrossRefGoogle Scholar
  19. Wang C, Fang J, He J, O’Connor CJ (2003) Synthesis of one-dimensional magnetic Co nanoparticles in a novel solution system. J Colloid Interface Sci 259:411–413CrossRefPubMedGoogle Scholar
  20. Wu SH, Chen DH (2003) Synthesis and characterization of nickel nanoparticles by hydrazine reduction in ethylene glycol. J Colloid Interface Sci 259:282–286. doi: 10.1016/S0021-9797(02)00135-2 CrossRefPubMedGoogle Scholar
  21. Xu H, Zhao Q, Yang H, Chen Y (2008) Study of magnetic properties of ZnO nanoparticles codoped with Co and Cu. J Nanopart Res 11(3):615–621CrossRefGoogle Scholar
  22. Yang H, Hu Y, Zhang X, Qiu G (2004a) Mechanochemical synthesis of cobalt oxide nanoparticles. Mater Lett 58:387–389CrossRefGoogle Scholar
  23. Yang HT, Su YK, Shen CM, Yang TZ, Gao HJ (2004b) Synthesis and magnetic properties of ε-cobalt nanoparticles. Surf Interface Anal 36:155–160CrossRefGoogle Scholar
  24. Yang LX, Zhu YJ, Li L, Zhang L, Tong H, Wang WW, Cheng GF, Zhu JF (2006) A facile hydrothermal route to flower-like cobalt hydroxide and oxide. Eur J Inorg Chem 2006:4787–4792CrossRefGoogle Scholar
  25. Zalich MA, Saunders M, Baranauskas VV, Vadala ML, Riffle JS, St. Pierre TG (2005) Structural analysis of macromolecule-cobalt nanoparticle complexes. Microsc Microanal 2:1898–1899Google Scholar
  26. Zeng S, Tang K, Li T, Liang Z (2007) 3D flower-like Y2O3:Eu3+ nanostructures: template-free synthesis and its luminescence properties. J Colloid and Interface Sci 316:921–929CrossRefGoogle Scholar
  27. Zhang YJ, Zhang Y, Wang ZH, Li D, Cui TY, Liu W, Zhang ZD (2008) Controlled synthesis of cobalt flowerlike architectures by a facile hydrothermal route. Eur J Inorg Chem 2008:2733–2738CrossRefGoogle Scholar
  28. Zhao Q, Li Z, Wu C, Bai X, Xie Y (2006) Facile synthesis and optical property of SnO2 flower-like architectures. J Nanopart Res 8:1065–1069CrossRefGoogle Scholar
  29. Zhu Y, Yang Q, Zheng H, Yu W, Qian Y (2005) Flower-like cobalt nanocrystals by a complex precursor reaction route. Mater Chem Phys 91:293–297CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Chemical Engineering DepartmentAmirkabir University of Technology (Polytechnic Tehran)TehranIran

Personalised recommendations