Skip to main content
Log in

Relevance of aerosol dynamics and dustiness for personal exposure to manufactured nanoparticles

  • Special Issue: Environmental and human exposure of nanomaterials
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Production and handling of manufactured nanoparticles (MNP) may result in unwanted worker exposure. The size distribution and structure of MNP in the breathing zone of workers will differ from the primary MNP produced. Homogeneous coagulation, scavenging by background aerosols, and surface deposition losses are determinants of this change during transport from source to the breathing zone, and to a degree depending on the relative time scale of these processes. Modeling and experimental studies suggest that in MNP production scenarios, workers are most likely exposed to MNP agglomerates or MNP attached to other particles. Surfaces can become contaminated by MNP, which constitute potential secondary sources of airborne MNP-containing particles. Dustiness testing can provide insight into the state of agglomeration of particles released during handling of bulk MNP powder. Test results, supported by field data, suggest that the particles released from powder handling occur in distinct size modes and that the smallest mode can be expected to have a geometric mean diameter >100 nm. The dominating presence of MNP agglomerates or MNP attached to background particles in the air during production and use of MNP implies that size alone cannot, in general, be used to demonstrate presence or absence of MNP in the breathing zone of workers. The entire respirable size fraction should be assessed for risk from inhalation exposure to MNP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Andreasen AHM, Hofman-Bang N, Rasmussen NH (1939) Über das Stäubungsvermögen der Stoffe (The dust generating capacity of materials). Colloid Polym Sci 86(1):70–77

    CAS  Google Scholar 

  • Ayer HE, Yeager DW (1982) Irritants in cigarette smoke plumes. Am J Public Health 72:1283–1285

    Article  PubMed  CAS  Google Scholar 

  • Bach S, Schmidt E (2008) Determining the dustiness of powders—a comparison of three measuring devices. Ann Occup Hyg 52:717–725

    Article  PubMed  Google Scholar 

  • Baron PA, Maynard AD, Foley M (2003) Evaluation of aerosol release during the handling of unrefined single walled carbon nanotube material. NIOSH, Cincinnati, USA

    Google Scholar 

  • Bierman MJ, Lau YKA, Jin S (2007) Hyperbranched PbS and PbSe nanowires and the effect of hydrogen gas on their synthesis. Nano Lett 7:2907–2912

    Article  PubMed  ADS  CAS  Google Scholar 

  • Brockel U, Wahl M, Kirsch R et al (2006) Formation and growth of crystal bridges in bulk solids. Chem Eng Technol 29:691–695

    Article  CAS  Google Scholar 

  • Brouwer DH, Links IH, de Vreede SA et al (2006) Size selective dustiness and exposure; simulated workplace comparisons. Ann Occup Hyg 50:445–452

    Article  PubMed  CAS  Google Scholar 

  • CEN (2006) EN 15051 Workplace atmospheres—measurement of the dustiness of bulk materials—requirements and test methods. Comité Européen de Normalisation, Brussels, Belgium

    Google Scholar 

  • Chen F, Lai ACK (2004) An Eulerian model for particle deposition under electrostatic and turbulent conditions. J Aerosol Sci 35:47–62

    Article  CAS  Google Scholar 

  • Cowherd C, Grelinger MA, Wong KF (1989) Dust inhalation exposures from the handling of small volumes of powders. Am Ind Hyg Assoc J 50:131–138

    PubMed  Google Scholar 

  • Crump JG, Seinfeld JH (1981) Turbulent deposition and gravitational sedimentation of an aerosol in a vessel of arbitrary shape. J Aerosol Sci 12:405–415

    Article  Google Scholar 

  • Davies KM, Hammond CM, Higman RW et al (1988) Progress in dustiness estimation: British Occupational Hygiene Society Technology Committee Working Party on Dustiness Estimation. Ann Occup Hyg 32:535–544

    Article  CAS  Google Scholar 

  • Debrincat DP, Solnordal CB, Van Deventer JSJ (2008) Characterisation of inter-particle forces within agglomerated metallurgical powders. Powder Technol 182:388–397

    Article  CAS  Google Scholar 

  • Endo Y, Hasebe S, Kousaka Y (1997) Dispersion of aggregates of fine powder by acceleration in an air stream and its application to the evaluation of adhesion between particles. Powder Technol 91:25–30

    Article  CAS  Google Scholar 

  • Gbureck U, Dembski S, Thull R et al (2005) Factors influencing calcium phosphate cement shelf-life. Biomaterials 26:3691–3697

    Article  PubMed  CAS  Google Scholar 

  • Gill TE, Zobeck TM, Stout JE (2006) Technologies for laboratory generation of dust from geological materials. J Hazard Mater 132:1–13

    Article  PubMed  CAS  Google Scholar 

  • Gong L, Xu B, Zhu Y (2009) Ultrafine particles deposition inside passenger vehicles. Aerosol Sci Technol 43:544–553

    Article  CAS  Google Scholar 

  • Heitbrink WA, Todd WF, Fischbach TJ (1989) Correlation of tests for material dustiness with worker exposure from bagging of powders. Appl Ind Hyg 4:12–16

    CAS  Google Scholar 

  • Heitbrink WA, Todd WF, Cooper TC et al (1990) The application of dustiness tests to the prediction of worker dust exposure. Am Ind Hyg Assoc J 51:217–223

    PubMed  CAS  Google Scholar 

  • HSE (1996) MDHS 81 Dustiness of powders and materials. Health and Safety Executive, UK

  • Ibaseta N (2007) Etude experimentale et modelisation de l’emission d’aerosols ultrafins lors du deversement de poudres nanostructures. Thesis. Institut national polytechniques de Toulouse, France. http://ethesis.inp-toulouse.fr/archive/00000612/

  • Jacobson MZ, Seinfeld JH (2004) Evolution of nanoparticle size and mixing state near the point of emission. Atmos Environ 38:1839–1850

    Article  CAS  Google Scholar 

  • Jensen KA, Koponen IK, Clausen PA et al (2009) Dustiness behaviour of loose and compacted Bentonite and organoclay powders: what is the difference in exposure risk? J Nanopart Res 11:133–146

    Article  CAS  Google Scholar 

  • Kousaka Y, Okuyama K, Endo Y (1980) Re-entrainment of small aggregate particles from a plane surface by air stream. J Chem Eng Japan 13:143–147

    Article  CAS  Google Scholar 

  • Kuhlbusch AJ, Rating U, van der Zwaag T et al (2008) Modelling of physical processes during dispersion of nanoparticles from a leak. European Aerosol Conference 2008, Thessaloniki, Abstract T01A023O

  • Lai AC (2002) Particle deposition indoors: a review. Indoor Air 12:211–214

    Article  PubMed  CAS  Google Scholar 

  • Lai ACK, Chen F (2006) Modeling particle deposition and distribution in a chamber with a two-equation Reynolds-averaged Navier-Stokes model. J Aerosol Sci 37:1770–1780

    Article  CAS  MathSciNet  Google Scholar 

  • Lai K, Nazaroff WW (2000) Modeling indoor particle deposition from turbulent flow onto smooth surfaces. J Aerosol Sci 31:463–476

    Article  CAS  Google Scholar 

  • Li WI, Edwards DA (1997) Aerosol particle transport and deaggregation phenomena in the mouth and throat. Adv Drug Deliv Rev 26:41–49

    Article  PubMed  Google Scholar 

  • Luther W (2004) Industrial applications of nanomaterials—chances and risks. Future technologies No. 54. VDI Technologiezentrum GmbH, Düsseldorf, Germany

    Google Scholar 

  • Maynard AD (2002) Experimental determination of ultrafine TiO2 deagglomeration in a surrogate pulmonary surfactant: Preliminary results. Ann Occup Hyg 46(Suppl 1):197–202

    Google Scholar 

  • Maynard AD, Zimmer AT (2003) Development and validation of a simple numerical model for estimating workplace aerosol size distribution evolution through coagulation, settling, and diffusion. Aerosol Sci Technol 37:804–817

    Article  CAS  Google Scholar 

  • Maynard AD, Baron PA, Foley M et al (2004) Exposure to carbon nanotube material: aerosol release during the handling of unrefined single-walled carbon nanotube material. J Toxicol Environ Health A 67:87–107

    Article  PubMed  CAS  Google Scholar 

  • McMurry PH, Rader DJ (1985) Aerosol wall losses in electrically charged chambers. Aerosol Sci Technol 4:249–268

    Article  CAS  Google Scholar 

  • Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839

    Article  PubMed  CAS  Google Scholar 

  • Petavratzi E, Kingman SW, Lowndes IS (2007) Assessment of the dustiness and the dust liberation mechanisms of limestone quarry operations. Chem Eng Process 46:1412–1423

    CAS  Google Scholar 

  • Plinke MAE, Leith D, Hathaway R et al (1994) Cohesion in granular materials. Bulk Solids Handling 14:101–106

    Google Scholar 

  • Qian J, Ferro AR (2008) Resuspension of dust particles in a chamber and associated environmental factors. Aerosol Sci Technol 42:566–578

    Article  CAS  Google Scholar 

  • Schneider T, Jensen KA (2008) Combined single-drop and rotating drum dustiness test of fine to nanosize powders using a small drum. Ann Occup Hyg 52:23–34

    Article  PubMed  CAS  Google Scholar 

  • Seipenbusch M, Binder A, Kasper G (2008) Temporal evolution of nanoparticle aerosols in workplace exposure. Ann Occup Hyg 52:707–716

    Article  PubMed  CAS  Google Scholar 

  • Sethi SA, Schneider T (1996) A gas fluidization dustiness tester. J Aerosol Sci 27(Suppl 1):S305–S306

    Article  Google Scholar 

  • Shafer EGE, Wollish EG, Engel CE (1956) The “Roche” friabilator. J Am Pharm Assoc 45:114–116

    CAS  Google Scholar 

  • Spagnoli D, Banfield JF, Parker SC (2008) Free energy change of aggregation of nanoparticles. J Phys Chem C 112:14731–14736

    Article  CAS  Google Scholar 

  • Stahlmecke BG, Asbach C, Kaminski H et al (2008) Agglomerate stability of nanopowders. European Aerosol Conference 2008, Thessaloniki, Abstract T01A029O

  • Szepvolgyi J, Mohai I, Gubicza J (2001) Atmospheric ageing of nanosized silicon nitride powders. J Mater Chem 11:859–863

    Article  CAS  Google Scholar 

  • Tielemans E, Schneider T, Goede H et al (2008) Conceptual model for assessment of inhalation exposure: defining modifying factors. Ann Occup Hyg 52:577–586

    Article  PubMed  Google Scholar 

  • Tomas J (2007) Adhesion of ultrafine particles—a micromechanical approach. Chem Eng Sci 62:1997–2010

    Article  CAS  Google Scholar 

  • Tsai S-J, Ashter A, Ada E et al (2008a) Control of airborne nanoparticles release during compounding of polymer nanocomposites. NANO 3(4):301–309

    Article  CAS  Google Scholar 

  • Tsai S-J, Ada E, Isaacs JA et al (2008b) Airborne nanoparticle release associated with the manual handling of nanoalumina and nanosilver in fume hoods. J Nanopart Res 11:147–161

    Article  CAS  Google Scholar 

  • Tsai C-J, Wu C-H, Leu M-L et al (2008c) Dustiness test of nanopowders using a standard rotating drum with a modified sampling train. J Nanopart Res 11:121–131

    Article  CAS  Google Scholar 

  • Wahl M, Bröckel U, Brendel L et al (2008) Understanding powder caking: predicting caking strength from individual particle contacts. Powder Technol 188:147–152

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study is part of the NANOTOOL project funded by the Occupational Safety and Health Advisory Boards for the Industry, Teaching and Research, and the Ministry of Science, Technology and Innovation in Denmark.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Schneider.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schneider, T., Jensen, K.A. Relevance of aerosol dynamics and dustiness for personal exposure to manufactured nanoparticles. J Nanopart Res 11, 1637–1650 (2009). https://doi.org/10.1007/s11051-009-9706-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-009-9706-y

Keywords

Navigation