Skip to main content
Log in

Phase transition induced formation of hollow structures in colloidal lanthanide-doped NaYF4 nanocrystals

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Formation of colloidal hollow structures in NaYF4 nanocrystals (NCs) with and without lanthanide ion doping has been observed and investigated via the co-thermolysis of a mixture of trifluoroacetate precursors in trioctylphosphine oxide. The Kirkendall effect in this one-step reaction is driven by the monomer diffusion and crystal phase transition. It is found that three kinetic stages which include rapid precipitation of cubic phase NCs, cubic to hexagonal phase transition concurrent with an inward transport of NaF species, and vacancy diffusion are attributed to the hollow structure formation. X-ray energy dispersive spectroscopy (XEDS) point analysis is applied to examine the ions distribution and crystalline components in the lanthanides (Yb and Er)-doped NaYF4 up-conversion nanophosphors (UCNPs). The hollow structures increase the surface-to-volume of a single NC and thus have a significant effect on the photoluminescence of the lanthanide-doped NPs and provide synthetic applications for achieving novel NaYF4-based NCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Cao HL, Qian XF, Wang C, Ma XD, Yin J, Zhu ZK (2005) High symmetric 18-facet polyhedron nanocrystals of Cu7S4 with a hollow nanocage. J Am Chem Soc 127:16024–16025

    Article  CAS  PubMed  Google Scholar 

  • Chang Y, Teo JJ, Zeng HC (2005) Formation of colloidal CuO nanocrystallites and their spherical aggregation and reductive transformation to hollow CU2O nanospheres. Langmuir 21:1074–1079

    Article  CAS  PubMed  Google Scholar 

  • Chen XY, Zhuang HZ, Liu GK, Li S, Niedbala RS (2003) Confinement on energy transfer between luminescent centers in nanocrystals. J Appl Phys 94:5559–5565

    Article  CAS  ADS  Google Scholar 

  • Chiang RK, Chiang RT (2007) Formation of hollow Ni2P nanoparticles based on the nanoscale Kirkendall effect. Inorg Chem 46:369–371

    Article  CAS  PubMed  Google Scholar 

  • Dhas NA, Suslick KS (2005) Sonochemical preparation of hollow nanospheres and hollow nanocrystals. J Am Chem Soc 127:2368–2369

    Article  CAS  PubMed  Google Scholar 

  • Fan HJ, Knez M, Scholz R, Hesse D, Nielsch K, Zacharias M, Gosele U (2007) Influence of surface diffusion on the formation of hollow nanostructures induced by the Kirkendall effect: the basic concept. Nano Lett 7:993–997

    Article  CAS  PubMed  ADS  Google Scholar 

  • Gao JH, Zhang B, Zhang XX, Xu B (2006) Magnetic-dipolar-interaction-induced self-assembly affords wires of hollow nanocrystals of cobalt selenide. Angew Chem Int Ed Engl 45:1220–1223

    Article  CAS  PubMed  Google Scholar 

  • Gou LF, Murphy CJ (2003) Solution-phase synthesis of Cu2O nanocubes. Nano Lett 3:231–234

    Article  CAS  ADS  Google Scholar 

  • Jiao SH, Xu LF, Jiang K, Xu DS (2006) Well-defined non-spherical copper sulfide mesocages with single-crystalline shells by shape-controlled Cu2O crystal templating. Adv Mater 18:1174–1178

    Article  CAS  Google Scholar 

  • Kramer KW, Biner D, Frei G, Gudel HU, Hehlen MP, Luthi SR (2004) Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors. Chem Mater 16:1244–1251

    Article  Google Scholar 

  • Liang HP, Zhang HM, Hu JS, Guo YG, Wan LJ, Bai CL (2004) Pt hollow nanospheres: facile synthesis and enhanced electrocatalysts. Angew Chem Int Ed Engl 43:1540–1543

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Zeng HC (2004) Fabrication of ZnO “dandelions” via a modified Kirkendall process. J Am Chem Soc 126:16744–16746

    Article  CAS  PubMed  Google Scholar 

  • Liu GK, Zhuang HZ, Chen XY (2002) Restricted phonon relaxation and anomalous thermalization of rare earth ions in nanocrystals. Nano Lett 2:535–539

    Article  CAS  ADS  Google Scholar 

  • Mai HX, Zhang YW, Si R, Yan ZG, Sun LD, You LP, Yan CH (2006) High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties. J Am Chem Soc 128:6426–6436

    Article  CAS  PubMed  Google Scholar 

  • Mai HX, Zhang YW, Sun LD, Yan CH (2007) Size- and phase-controlled synthesis of monodisperse NaYF4: Yb, Er nanocrystals from a unique delayed nucleation pathway monitored with upconversion spectroscopy. J Phys Chem C 111:13730–13739

    Article  CAS  Google Scholar 

  • Shan JN, Ju YG (2007) Controlled synthesis of lanthanide-doped NaYF4 upconversion nanocrystals via ligand induced crystal phase transition and silica coating. Appl Phys Lett 91:123103

    Article  ADS  Google Scholar 

  • Shan J, Ju Y (2009) Single-step synthesis and kinetic mechanism of monodisperse and hexagonal-phase NaYF4: Yb, Er upconversion nanophosphors. Nanotechnology 20:275603

    Article  PubMed  ADS  Google Scholar 

  • Shan J, Qin X, Yao N, Ju Y (2007) Synthesis of monodisperse hexagonal NaYF4: Yb, Ln (Ln = Er, Ho and Tm) upconversion nanocrystals in TOPO. Nanotechnology 18:445607

    Article  ADS  Google Scholar 

  • Shan J, Chen J, Meng J, Collins J, Soboyejo W, Friedberg JS, Ju Y (2008) Biofunctionalization, cytotoxicity, and cell uptake of lanthanide doped hydrophobically ligated NaYF4 upconversion nanophosphors. J Appl Phys 104:094308

    Article  ADS  Google Scholar 

  • Shen J, Sun LD, Yan CH (2008) Luminescent rare earth nanomaterials for bioprobe applications. Dalton Transactions 568:7–5697

    Google Scholar 

  • Smigelskas AD, Kirkendall EO (1947) Zinc Diffusion in Alpha-Brass. Transactions of the American Institute of Mining and Metallurgical Engineers 171:130–142

    Google Scholar 

  • Sun YG, Xia YN (2002) Shape-controlled synthesis of gold and silver nanoparticles. Science 298:2176–2179

    Article  CAS  PubMed  ADS  Google Scholar 

  • Sun YG, Mayers BT, Xia YN (2002) Template-engaged replacement reaction: A one-step approach to the large-scale synthesis of metal nanostructures with hollow interiors. Nano Letters 2:481–485

    Article  CAS  ADS  Google Scholar 

  • Sun CJ, Xu ZH, Hu B, Yi GS, Chow GM, Shen J (2007a) Application of NaYF4 : Yb, Er upconversion fluorescence nanocrystals for solution-processed near infrared photodetectors. Appl Phys Lett 91:191113

    Article  ADS  Google Scholar 

  • Sun X, Zhang YW, Du YP, Yan ZG, Si R, You LP, Yan CH (2007b) From trifluoroacetate complex precursors to monodisperse rare-earth fluoride and oxyfluoride nanocrystals with diverse shapes through controlled fluorination in solution phase. Chemistry-a European Journal 13:2320–2332

    Article  CAS  Google Scholar 

  • Wang LY, Li YD (2007) Controlled synthesis and luminescence of lanthanide doped NaYF4 nanocrystals. Chem Mater 19:727–734

    Article  CAS  Google Scholar 

  • Wang CM, Baer DR, Thomas LE, Amonette JE, Antony J, Qiang Y, Duscher G (2005a) Void formation during early stages of passivation: Initial oxidation of iron nanoparticles at room temperature. J Appl Phys 98:094308

    Article  ADS  Google Scholar 

  • Wang YL, Cai L, Xia YN (2005b) Monodisperse spherical colloids of Pb and their use as chemical templates to produce hollow particles. Adv Mater (Weinheim, Fed Repub Ger) 17:473–478

    Article  CAS  Google Scholar 

  • Yi GS, Chow GM (2006) Synthesis of hexagonal-phase NaYF4 : Yb, Er and NaYF4 : Yb, Tm nanocrystals with efficient up-conversion fluorescence. Adv Func Mater 16:2324–2329

    Article  CAS  Google Scholar 

  • Yin YD, Rioux RM, Erdonmez CK, Hughes S, Somorjai GA, Alivisatos AP (2004) Formation of hollow nanocrystals through the nanoscale Kirkendall Effect. Science 304:711–714

    Article  CAS  PubMed  ADS  Google Scholar 

  • Yin YD, Erdonmez CK, Cabot A, Hughes S, Alivisatos AP (2006) Colloidal synthesis of hollow cobalt sulfide nanocrystals. Adv Func Mater 16:1389–1399

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation MRSEC Program through the Princeton Center for Complex Materials (DMR-0819860) and AFSOR. The authors also thank Dr. Alan W Nicholls from The University of Illinois at Chicago for the help to obtain STEM images

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingning Shan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shan, J., Yao, N. & Ju, Y. Phase transition induced formation of hollow structures in colloidal lanthanide-doped NaYF4 nanocrystals. J Nanopart Res 12, 1429–1438 (2010). https://doi.org/10.1007/s11051-009-9702-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-009-9702-2

Keywords

Navigation