Journal of Nanoparticle Research

, Volume 12, Issue 1, pp 75–82 | Cite as

Dispersion of multi-walled carbon nanotubes in biocompatible dispersants

  • J.-P. Piret
  • S. Detriche
  • R. Vigneron
  • S. Vankoningsloo
  • S. Rolin
  • J. H. Mejia Mendoza
  • B. Masereel
  • S. Lucas
  • J. Delhalle
  • F. Luizi
  • C. Saout
  • O. Toussaint
Special focus: Safety of Nanoparticles

Abstract

Owing to their phenomenal electrical and mechanical properties, carbon nanotubes (CNT) have been an area of intense research since their discovery in 1991. Different applications for these nanoparticles have been proposed, among others, in electronics and optics but also in the medical field. In parallel, emerging studies have suggested potential toxic effects of CNT while others did not, generating some conflicting outcomes. These discrepancies could be, in part, due to different suspension approaches used and to the agglomeration state of CNT in solution. In this study, we described a standardized protocol to obtain stable CNT suspensions, using two biocompatible dispersants (Pluronic F108 and hydroxypropylcellulose) and to estimate the concentration of CNT in solution. CNT appear to be greatly individualized in these two dispersants with no detection of remaining bundles or agglomerates after sonication and centrifugation. Moreover, CNT remained perfectly dispersed when added to culture medium used for in vitro cell experiments. We also showed that Pluronic F108 is a better dispersant than hydroxypropylcellulose. In conclusion, we have developed a standardized protocol using biocompatible surfactants to obtain reproducible and stable multi-walled carbon nanotubes suspensions which can be used for in vitro or in vivo toxicological studies.

Keywords

Multi-walled CNT Pluronic F108 HPC Sonication Centrifugation Health safety Nanomedicine EHS 

References

  1. Bahr JL, Mickelson ET, Bronikowski MJ et al (2001) Dissolution of small diameter single-wall carbon nanotubes in organic solvents? Chem Commun 193–194Google Scholar
  2. Buford MC, Hamilton RF Jr, Holian A (2007) A comparison of dispersing media for various engineered carbon nanoparticles. Part Fibre Toxicol 4:6CrossRefPubMedGoogle Scholar
  3. Chen Z, Meng H, Xing G et al (2006) Acute toxicological effects of copper nanoparticles in vivo. Toxicol Lett 163:109–120CrossRefPubMedGoogle Scholar
  4. Colvin VL (2003) The potential environmental impact of engineered nanomaterials. Nat Biotechnol 21:1166–1170CrossRefPubMedGoogle Scholar
  5. Davoren M, Herzog E, Casey A et al (2007) In vitro toxicity evaluation of single walled carbon nanotubes on human A549 lung cells. Toxicol In vitro 21:438–448CrossRefPubMedGoogle Scholar
  6. Fiorito S, Serafino A, Andreola F et al (2006) Effects of fullerenes and single-wall carbon nanotubes on murine and human macrophages. Carbon 44:1100–1105CrossRefGoogle Scholar
  7. Ge C, Lao F, Li W et al (2008) Quantitative analysis of metal impurities in carbon nanotubes: efficacy of different pretreatment protocols for ICPMS spectroscopy. Anal Chem 80:9426–9434CrossRefPubMedGoogle Scholar
  8. Holman MW, Lackner DI (2006) The nanotech report, 4th edn. Lux Research, New YorkGoogle Scholar
  9. Jia G, Wang H, Yan L et al (2005) Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube and fullerene. Environ Sci Technol 39(5):1378–1383CrossRefPubMedGoogle Scholar
  10. Karlsson HL, Cronholm P, Gustafsson J et al (2008) Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chem Res Toxicol 21:1726–1732CrossRefPubMedGoogle Scholar
  11. Lacerda L, Bianco A, Prato M et al (2006) Carbon nanotubes as nanomedicines: from toxicology to pharmacology. Adv Drug Deliv Rev 58:1460–1470CrossRefPubMedGoogle Scholar
  12. Lam CW, James JT, McCluskey R et al (2006) A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks. Crit Rev Toxicol 36:189–217CrossRefPubMedGoogle Scholar
  13. Martin CR, Kohli P (2003) The emerging field of nanotube biotechnology. Nat Rev Drug Discov 2:29–37CrossRefPubMedGoogle Scholar
  14. Meng H, Chen Z, Xing G et al (2007) Ultrahigh reactivity provokes nanotoxicity: explanation of oral toxicity of nano-copper particles. Toxicol Lett 175:102–110CrossRefPubMedGoogle Scholar
  15. Monteiro-Riviere NA, Nemanich RJ, Inman AO et al (2005) Multi-walled carbon nanotubes interactions with human epidermal keratinocytes. Toxicol Lett 155:377–384CrossRefPubMedGoogle Scholar
  16. Muller J, Huaux F, Moreau N et al (2005) Respiratory toxicity of multi-wall carbon nanotubes. Toxicol Appl Pharmcol 207:221–231Google Scholar
  17. Pulskamp K, Diabate S, Krug HF (2007) Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants. Toxicol Lett 168:58–74CrossRefPubMedGoogle Scholar
  18. Rotoli BM, Bussolati O, Bianchi MG et al (2008) Non-functionalized multi-walled carbon nanotubes alter the paracellular permeability of human airway epithelial cells. Toxicol Lett 178:95–102CrossRefPubMedGoogle Scholar
  19. Sayes CM, Liang F, Hudson JL et al (2005) Functionalization density dependence of single-walled carbon nanotubes cytotoxicity in vitro. Toxicol Lett 161:135–142CrossRefPubMedGoogle Scholar
  20. Schipper ML, Nakayama-Ratchford N, Davis CR et al (2008) A pilot toxicology study of single-walled carbon nanotubes in a small sample of mice. Nat Nanotech 3:216–221CrossRefGoogle Scholar
  21. Shvedova AA, Castranova V, Kisin ER et al (2003) Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells. J Toxicol Environ Health 66:1909–1926CrossRefGoogle Scholar
  22. Shvedova AA, Kisin ER, Mercer R et al (2005) Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am J Physiol Lung Cell Mol Physiol 289:698–708CrossRefGoogle Scholar
  23. Smart SK, Cassady AI, Lu GQ et al (2006) The biocompatibility of carbon nanotubes. Carbon 44:1034–1047CrossRefGoogle Scholar
  24. Stix G (2001) Little big science. Nanotechnology. Sci Am 285(3):32–37CrossRefPubMedGoogle Scholar
  25. Thayer AM (2007) Carbon nanotubes by the metric ton: anticipating new commercial applications, producers increase capacity. Chem Eng News 85:29–38Google Scholar
  26. Wang H, Wang J, Deng X et al (2004) Biodistribution of carbon single-wall nanotubes in mice. J Nanosci nanotechnol 4(8):1019–1024CrossRefPubMedGoogle Scholar
  27. Wang RK, Park HO, Chen WC et al (2008) Improving the effectiveness of interfacial trapping in removing single-walled carbon nanotube bundles. J Am Chem Soc 130(44):14721–14728CrossRefPubMedGoogle Scholar
  28. Zhao Y, Xing G, Chai Z (2008) Are carbon nanotubes safe? Nat Nanotoxicol 3(4):191–192CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • J.-P. Piret
    • 1
  • S. Detriche
    • 4
  • R. Vigneron
    • 2
  • S. Vankoningsloo
    • 1
  • S. Rolin
    • 3
  • J. H. Mejia Mendoza
    • 4
  • B. Masereel
    • 3
  • S. Lucas
    • 2
  • J. Delhalle
    • 4
  • F. Luizi
    • 5
  • C. Saout
    • 1
  • O. Toussaint
    • 1
  1. 1.Laboratory of Biochemistry and Cellular Biology (URBC)University of NamurNamurBelgium
  2. 2.Laboratory of Analysis by Nuclear Reactions (LARN)University of NamurNamurBelgium
  3. 3.Laboratory of PharmacyUniversity of NamurNamurBelgium
  4. 4.Laboratory of Chemistry and Electrochemistry of SurfacesUniversity of NamurNamurBelgium
  5. 5.Nanocyl s.a.SambrevilleBelgium

Personalised recommendations