Journal of Nanoparticle Research

, Volume 11, Issue 6, pp 1339–1348 | Cite as

Photocatalytic activity of nanostructured TiO2 films produced by supersonic cluster beam deposition

  • Flavio Della Foglia
  • Tonia Losco
  • Paolo Piseri
  • Paolo Milani
  • Elena Selli
Research Paper


The photocatalytic activity of thin, nanostructured films of titanium dioxide, synthesized by supersonic cluster beam deposition (SCBD) from the gas phase, has been investigated employing the photodegradation of salicylic acid as test reaction. Because of the low deposition energy, the so-deposited highly porous TiO2 films are composed of nanoparticles maintaining their original properties in the film, which can be fully controlled by tuning the deposition and post-deposition treatment conditions. A systematic investigation on the evolution of light absorption properties and photoactivity of the films in relation to their morphology, determined by AFM analysis, and phase composition, determined by Raman spectroscopy, has been performed. The absorption and photocatalytic activity of the nanostructured films in the visible region could be enhanced either through post-deposition annealing treatment in ammonia containing atmosphere or employing mild oxidation conditions, followed by annealing in N2 at 600 °C.


Supersonic cluster beam deposition Titanium dioxide films Photocatalytic activity Nanomaterials Semiconductors 


  1. Anpo M, Takeuchi M, Ikeue K, Dohshi S (2002) Design and development of titanium oxide photocatalysts operating under visible and UV light irradiation. The applications of metal ion-implantation techniques to semiconducting TiO2 and Ti-zeolite catalysts. Curr Opin Solid State Mater Sci 6:381–388. doi:10.1016/S1359-0286(02)00107-9 CrossRefGoogle Scholar
  2. Asahi R, Morikawa T, Ohwaki T, Aoki A, Taga Y (2001) Visible-light photocatalysis in nitrogen-doped titanium oxide. Science 293:269–271. doi:10.1126/science.1061051 PubMedCrossRefGoogle Scholar
  3. Barborini E, Piseri P, Milani P (1999) A pulsed microplasma source of high intensity supersonic carbon cluster beam. J Phys D 32:L105–L109. doi:10.1088/0022-3727/32/21/102 CrossRefADSGoogle Scholar
  4. Barborini E, Kholmanov IN, Piseri P, Ducati C, Bottani CE, Milani P (2002) Engineering the nanocrystalline structure of TiO2 films by aerodynamically filtered cluster deposition. Appl Phys Lett 81:3052–3054. doi:10.1063/1.1510579 CrossRefADSGoogle Scholar
  5. Barborini E, Conti AM, Kholmanov I, Piseri P, Podestà A, Milani P, Cepek C, Sakho O, Macovez R, Sancrotti M (2005) Nanostructured TiO2 films with 2 eV optical gaps. Adv Mater 17:1842–1846. doi:10.1002/adma.200401169 CrossRefGoogle Scholar
  6. Bolton JR (1996) Solar photoproduction of hydrogen: a review. Sol Energy 57:37–50. doi:10.1016/0038-092X(96)00032-1 CrossRefGoogle Scholar
  7. Carotta MC, Ferroni M, Guidi V, Martinelli G (1999) Preparation and characterization of nanostructured titania thick films. Adv Mater 11:943–946. doi:10.1002/(SICI)1521-4095(199908)11:11<943::AID-ADMA943>3.0.CO;2-L CrossRefGoogle Scholar
  8. Chen X, Burda C (2008) The electronic origin and the visible-light absorption properties of C-, N- and S-doped TiO2 materials. J Am Chem Soc 130:5018–5019. doi:10.1021/ja711023z PubMedCrossRefGoogle Scholar
  9. Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107:2891–2959. doi:10.1021/cr0500535 PubMedCrossRefGoogle Scholar
  10. Choi W, Termin A, Hoffmann MR (1994) The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics. J Phys Chem 98:13669–13679. doi:10.1021/j100102a038 CrossRefGoogle Scholar
  11. Di Valentin C, Finazzi E, Pacchioni G, Selloni A, Livraghi S, Paganini MC, Giamello E (2007) N-doped TiO2: theory and experiment. Chem Phys 339:44–56. doi:10.1016/j.chemphys.2007.07.020 CrossRefADSGoogle Scholar
  12. Diwald O, Thompson TL, Goralski EG, Walck SD, Yates JT Jr (2004) The effect of nitrogen ion implantation on the photoactivity of TiO2 rutile single crystal. J Phys Chem B 108:52–57. doi:10.1021/jp030529t CrossRefGoogle Scholar
  13. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38. doi:10.1038/238037a0 PubMedCrossRefADSGoogle Scholar
  14. Fujishima A, Rao TN, Tryk DA (2000) Titanium dioxide photocatalysis. J Photochem Photobiol C 1:1–21. doi:10.1016/S1389-5567(00)00002-2 CrossRefGoogle Scholar
  15. Gole JL, Stout JD, Burda C, Lou Y, Chen X (2004) Highly efficient formation of visible light tunable TiO2-xNx photocatalysts and their transformation at the nanoscale. J Phys Chem B 108:1230–1240. doi:10.1021/jp030843n CrossRefGoogle Scholar
  16. Grätzel M (2001) Photoelectrochemical cells. Nature 414:338–344. doi:10.1038/35104607 PubMedCrossRefADSGoogle Scholar
  17. Hatchard CG, Parker CA (1956) A new sensitive chemical actinometer II. Potassium ferrioxalate as a standard chemical actinometer. Proc R Soc Lond A Math Phys Sci 235:518–536. doi:10.1098/rspa.1956.0102 CrossRefADSGoogle Scholar
  18. Ho W, Yu JC, Lee S (2006) Synthesis of hierarchical nanoporous F-doped TiO2 spheres with visible light photocatalytic activity. Chem Commun (Camb) (10):1115–1117. doi:10.1039/b515513d
  19. Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96. doi:10.1021/cr00033a004 CrossRefGoogle Scholar
  20. Irie H, Watanabe Y, Hashimoto K (2003) Nitrogen concentration dependence on photocatalytic activity of TiO2-xNx powders. J Phys Chem B 107:5483–5486. doi:10.1021/jp030133h CrossRefGoogle Scholar
  21. Khan SUM, Al-Shanhry M, Ingler WB Jr (2002) Efficient chemical water splitting by chemically modified n-TiO2. Science 297:2243–2245. doi:10.1126/science.1075035 PubMedCrossRefADSGoogle Scholar
  22. Khaselev O, Turner JA (1998) A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting. Science 280:425–427. doi:10.1126/science.280.5362.425 Google Scholar
  23. Kholmanov IN, Barborini E, Vinati S, Piseri P, Podestà A, Ducati C, Lenardi C, Milani P (2003) The influence of the precursor clusters on the structural and morphological evolution of nanostructured TiO2 under thermal annealing. Nanotechnology 14:1168–1173. doi:10.1088/0957-4484/14/11/002 CrossRefADSGoogle Scholar
  24. Lin Z, Orlov A, Lambert RM, Payne MC (2005) New insights into the origin of visible light photocatalytic activity of nitrogen-doped and oxygen-deficient anatase TiO2. J Phys Chem B 109:20948–20952. doi:10.1021/jp053547e PubMedCrossRefGoogle Scholar
  25. Macyk W, Kisch H (2001) Photosensitization of crystalline and amorphous titanium dioxide by platinum(IV) chloride surface complexes. Chem Eur J 7:1862–1867. doi:10.1002/1521-3765(20010504)7:9<1862::AID-CHEM1862>3.0.CO;2-G CrossRefGoogle Scholar
  26. Morikawa T, Asahi R, Ohwaki T, Aoki K, Taga Y (2001) Band gap narrowing of titanium dioxide by nitrogen doping. Jpn J Appl Phys 40:L561–L563. doi:10.1143/JJAP.40.L561 CrossRefADSGoogle Scholar
  27. Nakano Y, Morikawa T, Ohwaki T, Taga Y (2005a) Electrical characterization of band gap states in C-doped TiO2 films. Appl Phys Lett 87:052111/1–052111/3Google Scholar
  28. Nakano Y, Morikawa T, Ohwaki T, Taga Y (2005b) Deep-level optical spectroscopy investigation of N-doped TiO2 films. Appl Phys Lett 86:132104/1–132104/3Google Scholar
  29. Ni M, Leung MKH, Leung DYC, Sumathy K (2007) A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew Sustain Energy Rev 11:401–425. doi:10.1016/j.rser.2005.01.009 CrossRefGoogle Scholar
  30. Ohno T, Sarukawa K, Tokieda K, Matsumura M (2001) Morphology of a TiO2 photocatalyst (Degussa, P-25) consisting of anatase and rutile crystalline phases. J Catal 203:82–86. doi:10.1006/jcat.2001.3316 CrossRefGoogle Scholar
  31. Ollis DF (2005) Kinetics of liquid phase photocatalyzed reactions: an illuminating approach. J Phys Chem B 109:2439–2444. doi:10.1021/jp040236f PubMedCrossRefGoogle Scholar
  32. Qiu X, Burda C (2007) Chemically synthesized nitrogen-doped metal oxide nanoparticles. Chem Phys 339:1–10. doi:10.1016/j.chemphys.2007.06.039 CrossRefADSGoogle Scholar
  33. Sakthivel S, Kisch H (2003) Daylight photocatalysis by carbon modified titanium dioxide. Angew Chem Int Ed 42:4908–4911. doi:10.1002/anie.200351577 CrossRefGoogle Scholar
  34. Sakthivel S, Janczarek M, Kisch H (2004) Visible light activity and photoelectrochemical properties of nitrogen-doped TiO2. J Phys Chem B 108:19384–19387. doi:10.1021/jp046857q CrossRefGoogle Scholar
  35. Umebayashi T, Yamaki T, Itoh H, Asai K (2002) Band gap narrowing of titanium dioxide by sulfur doping. Appl Phys Lett 81:454–456. doi:10.1063/1.1493647 CrossRefADSGoogle Scholar
  36. Yu JC, Zhang L, Zheng Z, Zhao J (2003) Synthesis and characterization of phosphated mesoporous titanium dioxide with high photocatalytic activity. Chem Mater 15:2280–2286. doi:10.1021/cm0340781 CrossRefGoogle Scholar
  37. Zhang L, Macyk W, Lange C, Maier WF, Antonius C, Meissner D, Kisch H (2000) Visible-light detoxification and charge generation by transition metal chloride modified titania. Chem Eur J 6:379–384. doi:10.1002/(SICI)1521-3765(20000117)6:2<379::AID-CHEM379>3.0.CO;2-Z CrossRefGoogle Scholar
  38. Zhang J, Li M, Feng Z, Chen J, Li C (2006) UV Raman spectroscopic study on TiO2 I. Phase transformation at the surface and in the bulk. J Phys Chem B 110:927–935. doi:10.1021/jp0552473 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Flavio Della Foglia
    • 1
  • Tonia Losco
    • 1
  • Paolo Piseri
    • 1
  • Paolo Milani
    • 1
  • Elena Selli
    • 2
  1. 1.Dipartimento di Fisica and C.I.MA.I.NAUniversità degli Studi di MilanoMilanItaly
  2. 2.Dipartimento di Chimica Fisica ed Elettrochimica and C.I.MA.I.NAUniversità degli Studi di MilanoMilanItaly

Personalised recommendations