Fabrication of ZnS nanoparticle chains on a protein template

  • S. Padalkar
  • J. Hulleman
  • S. M. Kim
  • T. Tumkur
  • J.-C. Rochet
  • E. Stach
  • L. Stanciu
Research Paper

Abstract

In the present study, we have exploited the properties of a fibrillar protein for the template synthesis of zinc sulfide (ZnS) nanoparticle chains. The diameter of the ZnS nanoparticle chains was tuned in range of ~30 to ~165 nm by varying the process variables. The nanoparticle chains were characterized by field emission scanning electron microscopy, UV–Visible spectroscopy, transmission electron microscopy, electron energy loss spectroscopy, and high-resolution transmission electron microscopy. The effect of incubation temperature on the morphology of the nanoparticle chains was also studied.

Keywords

Nanoparticle chains Template Synthesis Morphology One-dimensional nanostructure 

References

  1. Alivisatos AP (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science 271(5251):933–937CrossRefADSGoogle Scholar
  2. Bachtold A, Hadleym P, Nakanishi T, Dekker C (2001) Logic circuits with carbon nanotube transistors. Science 294(5545):1317–1320CrossRefPubMedADSGoogle Scholar
  3. Chen X, Xu H, Xu N, Zhao F, Lin W, Lin G, Fu Y, Huang Z, Wang H, Wu M (2003) Kinetically controlled synthesis of wurtzite ZnS nanorods through mild thermolysis of a covalent organic-inorganic network. Inorg Chem 42:3100–3106CrossRefPubMedGoogle Scholar
  4. Chen M, Margittai M, Chen J, Langen R (2007) Investigation of α-synuclein fibril structure by site-directed spin labeling. J Biol Chem 282(34):24970–24979CrossRefPubMedGoogle Scholar
  5. Claridge SA, Goh SL, Frechet JMJ, Williams SC, Micheel CM, Alivisatos AP (2005) Direct assembly of discrete gold nanoparticle groupings using branched DNA scaffolds. Chem Mater 17(7):1628–1635CrossRefGoogle Scholar
  6. Collins PG, Arnold MS, Avouris P (2001) Engineering carbon nanotubes and nanotube circuits using electrical breakdown. Science 292(5517):706–709CrossRefPubMedADSGoogle Scholar
  7. Conway KA, Harper JD, Lansbury PT Jr (2000) Fibrils formed in vitro from alpha-synuclein and two mutant forms linked to Parkinson’s disease are typical amyloid. Biochemistry 39(10):2552–2563CrossRefPubMedGoogle Scholar
  8. Conway KA, Rochet JC, Bieganski RM, Lansbury PT Jr (2001) Kinetic stabilization of the α-synuclein protofibril by a dopamine-α-synuclein adduct. Science 294:1346–1349CrossRefPubMedADSGoogle Scholar
  9. Cui Y, Wei QQ, Park HK, Lieber CM (2001) Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293:1289–1292CrossRefPubMedADSGoogle Scholar
  10. Deng Z, Mao C (2003) DNA templated fabrication of 1D Parallel and 2D crossed metallic nanowire array. Nano Lett 3(11):1545–1548CrossRefADSGoogle Scholar
  11. DePace AH, Weissman JS (2002) Origins and kinetic consequences of diversity in Sup35p yeast prion fibers. Nat Struct Biol 9(5):389–396PubMedGoogle Scholar
  12. Diehl MR, Yaliraki SN, Beckman RA, Barahona M, Heath JR (2002) Self-assembled, deterministic carbon nanotube wiring networks. Angew Chem Int Edit 41(2):353–356CrossRefGoogle Scholar
  13. Dong L, Hollis T, Connolly BA, Wright NG, Horrocks BR, Houlton A (2007) DNA templated semiconductor nanoparticle chains and wires. J Adv Mater 19(13):1748–1751CrossRefGoogle Scholar
  14. Flynn CE, Lee SW, Peelle BR, Belcher AM (2003) Viruses as vehicles for growth, organization and assembly of materials. Acta Mater 51(19):5867–5880CrossRefGoogle Scholar
  15. Heise H, Hoyer W, Becker S, Andronesi OC, Riedel D, Baldus M (2005) Molecular-level secondary structure, polymorphism, and dynamics of full length α-synuclein fibrils studied by solid state NMR. Proc Natl Acad Sci USA 102(44):15871–15876CrossRefPubMedADSGoogle Scholar
  16. Hoyer W, Antony T, Cherny D, Heim G, Jovin TM, Subramaniam V (2002) Dependence of α-synuclein aggregate morphology on solution conditions. J Mol Biol 322(2):383–393CrossRefPubMedGoogle Scholar
  17. Huang Y, Duan X, Cui Y, Lauhon LJ, Kim KH, Lieber CM (2001) Logic gates and computation from assembled nanowire building blocks. Science 294:1313–1317CrossRefPubMedADSGoogle Scholar
  18. Huang Y, Chiang CY, Lee SK, Gao Y, Hu EL, De Yoreo J, Belcher AM (2005) Programmable assembly of nanoarchitectures using genetically engineered viruses. Nano Lett 5(7):1429–1434CrossRefPubMedADSGoogle Scholar
  19. Jiang X, Xie Y, Lu J, Zhu L, He W, Qian Y (2001) Simultaneous in situ formation of ZnS nanowires in a liquid crystal template by gamma radiation. Chem Mater 13:1213–1218CrossRefGoogle Scholar
  20. Johnson JC, Choi HJ, Knutsen KP, Schaller RD, Yang P, Saykally RJ (2002) Single gallium nitride nanowire laser. Nat Mater 1(2):106–110CrossRefPubMedADSGoogle Scholar
  21. Jovanovic D, Validzic I, Jankovic I, Bibic N, Nedeljkovic J (2007) Synthesis and characterization of shaped ZnS nanocrystals in water, in oil microemulsions. Mater Lett 61:4396–4399CrossRefGoogle Scholar
  22. Kar S, Biswas S, Chaudhuri S (2003) Catalytic growth and photoluminescence properties of ZnS nanowires. Nanotechnology 16:737–740CrossRefADSGoogle Scholar
  23. Keren K, Berman RS, Buchstab E, Sivan U, Braun E (2003) DNA-templated carbon nanotube field-effect transistor. Science 302(5649):1380–1382CrossRefPubMedADSGoogle Scholar
  24. Kimberly HS, Schwartz JJ, Santos AT, Zhang S, Jacobson JM (2002) Remote electronic control of DNA hybridization through inductive coupling to an attached metal nanocrystal antenna. Nature 415(6868):152–155CrossRefADSGoogle Scholar
  25. Klein DL, Roth R, Lim AKL, Alivisatos AP, McEuen MP (1997) A single electron transistor made from cadmium selenide nanocrystal. Nature 389:699–701CrossRefADSGoogle Scholar
  26. Lu F, Cai W, Zhang Y, Li Y, Sun F (2007) Fabrication and field emission performance of zinc sulfide nanobelt arrays. J Phys Chem C 111:13385–13392CrossRefGoogle Scholar
  27. Ma C, Moore D, Li J, Wang Z (2003) Nanobelts, nanocombs and nanowindmills of wurtzite ZnS. Adv Mater 15:228–231CrossRefGoogle Scholar
  28. Mao C, Solis DJ, Reiss BD, Kottmann ST, Sweeney RY, Hayhurst A, Georgiou G, Iverson B, Belcher AM (2004) Virus-based toolkit for the directed synthesis of magnetic and semiconducting nanowires. Science 303(5655):213–217CrossRefPubMedADSGoogle Scholar
  29. Meng XM, Liu J, Jiang Y, Chen WW, Lee CS, Bello I, Lee ST (2003) Structure and size controlled ultrafine ZnS nanowires. Chem Phys Lett 382:434–438CrossRefADSGoogle Scholar
  30. Merril CR (1990) Silver staining of protein and DNA. Nature 343:779–780CrossRefPubMedADSGoogle Scholar
  31. Merril CR, Miriam L, Dunau ML, Goldman D (1981) A rapid sensitive silver stain for polypeptides in polyacrylamide gels. Anal Biochem 110:201–207CrossRefPubMedGoogle Scholar
  32. Monson CF, Woolley AT (2003) DNA-templated construction of copper nanowires. Nano Lett 3(3):359–363CrossRefADSGoogle Scholar
  33. Murray CB, Kagan CR, Bawendi MG (2000) Synthesis and characterization of monodisperse nanocrystals and closed packed nanocrystal assembly. Annu Rev Mat Sci 30:545–610CrossRefGoogle Scholar
  34. Murray IV, Giasson BI, Quinn SM, Koppaka V, Axelsen PH, Ischiropoulos H, Trojanowski JQ, Lee VM (2003) Role of α-synuclein carboxy-terminus on fibril formation invitro. Biochemistry 42(28):8530–8540CrossRefPubMedGoogle Scholar
  35. Nam KT, Kim DW, Yoo PJ, Chiang CY, Meethong N, Hammond PT, Chiang YM, Belcher AM (2006) Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science 312(5775):885–888CrossRefPubMedADSGoogle Scholar
  36. Nelson R, Eisenberg D (2006) Structural models of amyloid-like fibrils. Adv Protein Chem 73:235–282CrossRefPubMedGoogle Scholar
  37. Padalkar S, Hulleman J, Deb P, Cunzeman K, Rochet JC, Stach EA, Stanciu L (2007) Alpha-synuclein as a template for the synthesis of metallic nanowires. Nanotechnology 18:055609CrossRefADSGoogle Scholar
  38. Padalkar S, Hulleman J, Kim SM, Rochet JC, Stach EA, Stanciu L (2008) Protein-templated semiconductor nanoparticle chains. Nanotechnology 19:275602CrossRefADSGoogle Scholar
  39. Qin Z, Hu D, Han S, Hong DP, Fink AL (2007) Role of different regions of α-synuclein in the assembly of the fibrils. Biochemistry 46(46):13322–13330CrossRefPubMedGoogle Scholar
  40. Richter J, Mertig M, Pompe W, Monch I, Schackert HK (2001) Construction of highly conductive nanowires on a DNA template. Appl Phys Lett 78(4):536–538CrossRefADSGoogle Scholar
  41. Rochet JC (2007) Novel therapeutic strategies for the treatment of protein-misfolding disease. Expert Rev Mol Med 9(17):1–34CrossRefPubMedGoogle Scholar
  42. Rochet JC, Conway KA, Lansbury PT Jr (2000) Inhibition of fibrillization and accumulation of prefibrillar oligomers in mixtures in human and mouse alpha synuclein. Biochemistry 39:10619–10626CrossRefPubMedGoogle Scholar
  43. Scheibel T, Lindquist SL (2001) The role of conformational flexibility in prion propagation and maintenance for Sup35p. Nat Struct Biol 8(11):958–962CrossRefPubMedGoogle Scholar
  44. Scheibel T, Parthasarathy R, Sawicki G, Lin XM, Jaeger H, Lindquist SL (2003) Conducting nanowires built by controlled self assembly of amyloid fibers and selective metal deposition. Proc Natl Acad Sci USA 100:4527–4532CrossRefPubMedADSGoogle Scholar
  45. Serio TR, Cashikar AG, Kowal AS, Sawicki GJ, Moslehi JJ, Serpell L, Arnsdorf MF, Lindquist SL (2000) Nucleated conformational conversion and the replication of conformational information by a prion determinant. Science 289(5483):1317–1321CrossRefPubMedADSGoogle Scholar
  46. Serpell LC, Berriman J, Jakes R, Goedert M, Crowther RA (2000) Fiber diffraction of synthetic α-synuclein filaments shows amyloid-like cross-beta conformation. Proc Natl Acad Sci USA 97(9):4897–4902CrossRefPubMedADSGoogle Scholar
  47. Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M (1997) α-Synuclein in Lewy bodies. Nature 388:839–840CrossRefPubMedADSGoogle Scholar
  48. Vilar M, Chou HT, Maji SK, Riek-Loher D, Verel R, Manning G, Stahlberg H, Riek R (2008) The fold of α-synuclein fibrils. Proc Natl Acad Sci USA 105(25):8637–8642CrossRefPubMedADSGoogle Scholar
  49. Wang Y, Zhang L, Liang C, Wang G, Peng X (2002) Catalytic growth and photoluminescence properties of semiducting single-crystal ZnS nanowires. Chem Phys Lett 357:314–318CrossRefADSGoogle Scholar
  50. Xu X, Fei G, Yu W, Wang X, Chen L, Zhang L (2006) Preparation and formation mechanism of ZnS semiconductor nanowires made by electrochemical deposition method. Nanotechnology 17:426–429CrossRefADSGoogle Scholar
  51. Yan H, Park SH, Finkelstein G, Reif JH, LaBean TH (2003) DNA-templated self-assembly of protein arrays and highly conductive nanowires. Science 301(5641):1882–1884CrossRefPubMedADSGoogle Scholar
  52. Yin L, Bando Y, Zhan J, Li M, Goldberg D (2005) Self-assembled highly faceted wurtzite-type ZnS single crystalline nanotubes with hexagonal cross-sections. Adv Mater 17:1972–1977CrossRefGoogle Scholar
  53. Yu J, Joo J, Park H, Baik S, Kim Y, Kim S, Hyeon T (2005) Synthesis of quantum sized cubic ZnS nanorods by the oriented attachment mechanism. J Am Chem Soc 127:5662–5670CrossRefPubMedGoogle Scholar
  54. Zhang D, Qi L, Cheng H, Ma J (2002) Preparation of ZnS nanorods by a liquid crystal template. J Colloidal Interface Sci 246:413CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • S. Padalkar
    • 1
    • 2
  • J. Hulleman
    • 3
  • S. M. Kim
    • 1
    • 2
  • T. Tumkur
    • 1
  • J.-C. Rochet
    • 3
  • E. Stach
    • 1
    • 2
  • L. Stanciu
    • 1
    • 2
  1. 1.School of Materials EngineeringPurdue UniversityWest LafayetteUSA
  2. 2.Birck Nanotechnology CenterPurdue UniversityWest LafayetteUSA
  3. 3.Department of Medicinal Chemistry and Molecular PharmacologyPurdue UniversityWest LafayetteUSA

Personalised recommendations