Facile fabrication, characterization, and enhanced photoelectrocatalytic degradation performance of highly oriented TiO2 nanotube arrays

  • Qidong Zhao
  • Xinyong Li
  • Ning Wang
  • Yang Hou
  • Xie Quan
  • Guohua Chen
Research Paper

Abstract

Highly ordered TiO2 nanotube arrays were successfully fabricated using ethanol and water mixture electrolytes (40 vol% ethanol and 0.2 wt% hydrofluoric acid) by a facile electrochemical anodization method. The as-prepared nanotube arrays were grown perpendicular to the titanium substrate with about 90 nm in diameter, 20 nm in wall thickness, and around 500 nm in length. The formation mechanism of the samples is briefly discussed. A blue shift in the spectrum of UV–Vis absorption was observed with respect to a piece of the sol–gel derived TiO2 film. Moreover, photocurrent response and photoelectrocatalytic degradation of methyl orange under ultraviolet light irradiation were adopted to evaluate the photoelectrocatalytic properties of the TiO2 nanotube arrays. We demonstrate that the highly ordered TiO2 nanotube arrays possess much better photoelectrocatalytic activity than the sol–gel derived TiO2 film and good stability.

Keywords

Titania Nanotube Photocurrent Photoelectrocatalytic degradation Nanomanufacturing 

References

  1. Albu SP, Ghicov A, Aldabergenova S, Drechsel P, LeClere D, Thompson GE, Macak JM, Schmuki P (2008a) Formation of double-walled TiO2 nanotubes and robust anatase membranes. Adv Mater 20:1–5CrossRefGoogle Scholar
  2. Albu SP, Kim D, Schmuki P (2008b) Growth of aligned TiO2 bamboo-type nanotubes and highly ordered nanolace. Angew Chem Int Ed 47:1916–1919CrossRefGoogle Scholar
  3. Bhargava YV, Nguyen QAS, Devine TM (2009) Initiation of organized nanopore/nanotube arrays in titanium oxide. J Electrochem Soc 156:E62–E68CrossRefGoogle Scholar
  4. Bwana NN (2008) Comparison of the performances of dye-sensitized solar cells based on different TiO2 electrode nanostructures. J Nanopart Res. Doi:10.1007/s11051-008-9545-2
  5. Chanmanee W, Watcharenwong A, Chenthamarakshan CR, Kajitvichyanukul P, Tacconi NR, Rajeshwar K (2008) Formation and characterization of self-organized TiO2 nanotube arrays by pulse anodization. J Am Chem Soc 130:965–974CrossRefPubMedGoogle Scholar
  6. Chen XB, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107:2891–2959CrossRefPubMedGoogle Scholar
  7. Chen QW, Xu DS (2009) Large-scale, noncurling, free-standing crystallized TiO2 nanotube arrays for dye-sensitized solar cells. J Phys Chem C 113:6310–6314CrossRefGoogle Scholar
  8. Choi J, Wehrspohn RB, Lee J, Gosele U (2004) Anodization of nanoimprinted titanium: a comparison with formation of porous alumina. Electrochim Acta 49:2645–2652CrossRefGoogle Scholar
  9. Diamanti MV, Pedeferri MP (2007) Effect of anodic oxidation parameters on the titanium oxides formation. Corros Sci 49:939–948CrossRefGoogle Scholar
  10. Fujishima A, Zhang XT, Tryk DA (2008) TiO2 photocatalysis and related surface phenomena. Surf Sci Rep 63:515–582CrossRefADSGoogle Scholar
  11. Ghicov A, Schmuki P (2009) Self-ordering electrochemistry: a review on growth and functionality of TiO2 nanotubes and other self-aligned MOx structures. Chem Commun  :2791–2808CrossRefGoogle Scholar
  12. Ghicov A, Tsuchiya H, Macak JM, Schmuki P (2005) Titanium oxide nanotubes prepared in phosphate electrolytes. Electrochem Commun 7:505–509CrossRefGoogle Scholar
  13. Kaneco S, Chen Y, Westerhoff P, Crittenden JC (2007) Fabrication of uniform size titanium oxide nanotubes: Impact of current density and solution conditions. Scripta Mater 56:373–376CrossRefGoogle Scholar
  14. Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K (1998) Formation of titanium oxide nanotube. Langmuir 14:3160–3163CrossRefGoogle Scholar
  15. Kim D, Ghicov A, Albu SP, Schmuki P (2008) Bamboo-type TiO2 nanotubes: improved conversion efficiency in dye-sensitized solar cells. J Am Chem Soc 130:16454–16455CrossRefPubMedGoogle Scholar
  16. Kuang D, Brillet J, Chen P, Takata M, Uchida S, Miura H, Sumioka K, Zakeeruddin SM, Grätzel M (2008) Application of highly ordered TiO2 nanotube arrays in flexible dye-sensitized solar cells. ACS Nano 2:1113–1116CrossRefPubMedGoogle Scholar
  17. Kuznetsov VN, Serpone N (2006) Visible light absorption by various titanium dioxide specimens. J Phys Chem B 110:25203–25209CrossRefPubMedGoogle Scholar
  18. Lin CJ, Yu WY, Lu YT, Chien SH (2008) Fabrication of open-ended high aspect-ratio anodic TiO2 nanotube films for photocatalytic and photoelectrocatalytic applications. Chem Commun  :6031–6033CrossRefGoogle Scholar
  19. Liu ZY, Zhang XT, Nishimoto S, Murakami T, Fujishima A (2008) Efficient photocatalytic degradation of gaseous acetaldehyde by highly ordered TiO2 nanotube arrays. Environ Sci Technol 42:8547–8551CrossRefPubMedGoogle Scholar
  20. Macak JM, Tsuchiya H, Taveria L, Ghicov A, Schmuki P (2005a) Self-organized nanotubular oxide layers on Ti–6Al–7Nb and Ti–6Al–4V formed by anodization in NH4F solutions. J Biomed Mater Res A 75:928–933PubMedGoogle Scholar
  21. Macak JM, Tsuchiya H, Taveria L, Ghicov A, Schmuki P, Barczuk PJ, Nowakowska MZ, Chojak M, Kulesza PJ (2005b) Self-organized nanotubular TiO2 matrix as support for dispersed Pt/Ru nanoparticles: enhancement of the electrocatalytic oxidation of methanol. Electrochem Commun 7:1417–1422CrossRefGoogle Scholar
  22. Macak JM, Tsuchiya H, Taveira L, Aldabergerova S, Schmuki P (2005c) Smooth anodic TiO2 nanotubes. Angew Chem Int Ed 44:7463–7465CrossRefGoogle Scholar
  23. Macak JM, Taveira L, Tsuchiya H, Sirotna K, Macak J, Schmuki P (2006) Influence of different fluoride containing electrolytes on the formation of self-organized titania nanotubes by Ti anodization. J Electroceram 16:29–34CrossRefGoogle Scholar
  24. Mohapatra SK, Misra M, Mahajan VK, Raja KS (2007) A novel method for the synthesis of titania nanotubes using sonoelectrochemical method and its application for photoelectrochemical splitting of water. J Catal 246:362–369CrossRefGoogle Scholar
  25. Mor GK, Shankar K, Paulose M, Varghese OK, Grimes CA (2005) Enhanced photocleavage of water using titania nanotube arrays. Nano Lett 5:191–195CrossRefPubMedADSGoogle Scholar
  26. Mor GK, Varghese OK, Paulose M, Shankar K, Grimes CA (2006) A review on highly ordered, vertically oriented TiO2 nanotube arrays: fabrication, material properties, and solar energy applications. Sol Energy Mater Sol Cells 90:2011–2075CrossRefGoogle Scholar
  27. Mura F, Masci A, Pasquali M, Pozio A (2009) Effect of a galvanostatic treatment on the preparation of highly ordered TiO2 nanotubes. Electrochim Acta 54:3794–3798CrossRefGoogle Scholar
  28. Na SI, Kim SS, Hong WK, Park JW, Jo J, Nah YC, Lee T, Kim DY (2008) Fabrication of TiO2 nanotubes by using electrodeposited ZnO nanorod template and their application to hybrid solar cells. Electrochim Acta 53:2560–2566CrossRefGoogle Scholar
  29. Nguyen QA, Bhargava YV, Devine TM (2008) Titania nanotube formation in chloride and bromide containing electrolytes. Electrochem Commun 10:471–475CrossRefGoogle Scholar
  30. Paulose M, Shankar K, Yoriya S, Prakasam HE, Varghese OK, Mor GK, Latempa TA, Fitzgerald A, Grimes CA (2006) Anodic growth of highly ordered TiO2 nanotube arrays to 134 μm in length. J Phys Chem B 110:16179–16184CrossRefPubMedGoogle Scholar
  31. Prakasam HE, Shankar K, Paulose M, Varghese OK, Grimes CA (2007) A new benchmark for TiO2 nanotube array growth by anodization. J Phys Chem C 111:7235–7241CrossRefGoogle Scholar
  32. Quan X, Yang S, Ruan X, Zhao H (2005) Preparation of titania nanotubes and their environmental applications as electrode. Environ Sci Technol 39:3770–3775CrossRefPubMedGoogle Scholar
  33. Raja KS, Mahajan VK, Misra M (2006) Determination of photoconversion efficiency of nanotubular titanium oxide photo-electrochemical cell for solar hydrogen generation. J Power Sources 159:1258–1265CrossRefGoogle Scholar
  34. Raja KS, Gandhi T, Misra M (2007) Effect of water content of ethylene glycol as electrolyte for synthesis of ordered titania nanotubes. Electrochem Commun 9:1069–1076CrossRefGoogle Scholar
  35. Richter C, Wu Z, Panaitescu E, Willey RJ, Menon L (2007) Ultrahigh-aspect-ratio titania nanotubes. Adv Mater 19:946–948CrossRefGoogle Scholar
  36. Ruan C, Paulose M, Varghese OK, Mor GK, Grimes CA (2005) Fabrication of highly ordered TiO2 nanotube arrays using an organic electrolyte. J Phys Chem B 109:15754–15759CrossRefPubMedGoogle Scholar
  37. Sene JJ, Zeltner WA, Anderson MA (2003) Fundamental photoelectrocatalytic and electrophoretic mobility studies of TiO2 and V-Doped TiO2 thin-film electrode materials. J Phys Chem B 107:1597–1603CrossRefGoogle Scholar
  38. Seo MH, Yuasa M, Kida T, Huh JS, Shimanoe K, Yamazoe N (2009) Gas sensing characteristics and porosity control of nanostructured films composed of TiO2 nanotubes. Sensor Actuat B-Chem 137:513–520CrossRefGoogle Scholar
  39. Shankar K, Mor GK, Fitzgerald A, Grimes CA (2007) Cation effect on the electrochemical formation of very high aspect ratio TiO2 nanotube arrays in formamide-water mixtures. J Phys Chem C 111:21–26CrossRefGoogle Scholar
  40. Shankar K, Basham JI, Allam NK, Varghese OK, Mor GK, Feng XJ, Paulose M, Seabold JA, Choi KS, Grimes CA (2009) Recent advances in the use of TiO2 nanotube and nanowire arrays for oxidative photoelectrochemistry. J Phys Chem C 113:6327–6359CrossRefGoogle Scholar
  41. Shrestha NK, Macak JM, Stein FS, Hahn R, Mierke CT, Fabry B, Schmuki P (2009) Magnetically guided titania nanotubes for site-selective photocatalysis and drug release. Angew Chem Int Ed 48:969–972CrossRefGoogle Scholar
  42. Su ZX, Zhou WZ (2009) Formation, microstructures and crystallization of anodic titanium oxide tubular arrays. J Mater Chem 19:2301–2309CrossRefGoogle Scholar
  43. Varghese OK, Gong DW, Paulose M, Ong KG, Dickey EC, Grimes CA (2003) Extreme changes in the electrical resistance of titania nanotubes with hydrogen exposure. Adv Mater 15:624–627CrossRefGoogle Scholar
  44. Wang J, Lin ZQ (2009) Anodic formation of ordered TiO2 nanotube arrays: effects of electrolyte temperature and anodization potential. J Phys Chem C 113:4026–4030CrossRefGoogle Scholar
  45. Wang DW, Fang HT, Li F, Chen ZG, Zhong QS, Lu GQ, Cheng HM (2008) Aligned titania nanotubes as an intercalation anode material for hybrid electrochemical energy storage. Adv Funct Mater 18:1–7Google Scholar
  46. Wang DA, Liu Y, Yu B, Zhou F, Liu WM (2009) TiO2 nanotubes with tunable morphology, diameter, and length: synthesis and photo-electrical/catalytic performance. Chem Mater 21:1198–1206CrossRefGoogle Scholar
  47. Watanabe T, Fukayama S, Miyauchi M, Fujishima A, Hashimoto K (2000) Photocatalytic activity and photo-induced wettability conversion of TiO2 thin film prepared by sol-gel process on a soda-lime glass. J Sol–Gel Sci Technol 19:71–76CrossRefGoogle Scholar
  48. Wijnhoven JE, Vos W (1998) Preparation of photonic crystals made of air spheres in titania. Science 281:802–804CrossRefADSGoogle Scholar
  49. Wu X, Jiang QZ, Ma ZF, Fu M, Shangguan WF (2005) Synthesis of titania nanotubes by microwave irradiation. Solid State Commun 136:513–517CrossRefADSGoogle Scholar
  50. Yang Y, Wang XH, Li LT (2008) Crystallization and phase transition of titanium oxide nanotube arrays. J Am Ceram Soc 91:632–635CrossRefGoogle Scholar
  51. Yoriya S, Mor GK, Sharma S, Grimes CA (2008) Synthesis of ordered arrays of discrete, partially crystalline titania nanotubes by Ti anodization using diethylene glycol electrolytes. J Mater Chem 18:3332–3336CrossRefGoogle Scholar
  52. Yu BY, Tsai A, Tsai SP, Wong KT, Yang Y, Chu CW, Shyue JJ (2008) Efficient inverted solar cells using TiO2 nanotube arrays. Nanotechnology 19:255202CrossRefADSGoogle Scholar
  53. Zhang S, Chen Y, Yu Y, Wu H, Wang S, Zhu B, Huang W, Wu S (2008) Synthesis, characterization of Cr-doped TiO2 nanotubes with high photocatalytic activity. J Nanopart Res 10:871–875CrossRefGoogle Scholar
  54. Zhao J, Wang X, Chen R, Li L (2005) Fabrication of titanium oxide nanotube arrays by anodic oxidation. Solid State Commun 134:705–710CrossRefADSGoogle Scholar
  55. Zhu K, Neale NR, Miedaner A, Frank AJ (2007) Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. Nano Lett 7:69–74CrossRefPubMedADSGoogle Scholar
  56. Zhuang HF, Lin CJ, Lai YK, Sun L, Li J (2007) Some critical structure factors of titanium oxide nanotube array in its photocatalytic activity. Environ Sci Technol 41:4735–4740CrossRefPubMedGoogle Scholar
  57. Zwilling V, Darque-Ceretti E, Boutry-Forveille A, David D, Perrin MY, Aucouturier M (1999) Structure and physicochemistry of anodic oxide films on titanium and TA6 V alloy. Surf Interface Anal 27:629–637CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Qidong Zhao
    • 1
  • Xinyong Li
    • 1
    • 2
  • Ning Wang
    • 1
  • Yang Hou
    • 1
  • Xie Quan
    • 1
  • Guohua Chen
    • 2
  1. 1.Key Laboratory of Industrial Ecology and Environmental Engineering (MOE) and State Key Laboratory of Fine Chemical, School of Environmental and Biological Science and TechnologyDalian University of TechnologyDalianChina
  2. 2.Department of Chemical and Biological EngineeringThe Hong Kong University of Science and TechnologyClear Water Bay, KowloonHong Kong, China

Personalised recommendations