Journal of Nanoparticle Research

, Volume 12, Issue 5, pp 1599–1608 | Cite as

Synthesis of bombesin-functionalized iron oxide nanoparticles and their specific uptake in prostate cancer cells

  • Amanda L. Martin
  • Jennifer L. Hickey
  • Amber L. Ablack
  • John D. Lewis
  • Leonard G. Luyt
  • Elizabeth R. Gillies
Research Paper


The imaging of molecular markers associated with disease offers the possibility for earlier detection and improved treatment monitoring. Receptors for gastrin-releasing peptide are overexpressed on prostate cancer cells offering a promising imaging target, and analogs of bombesin, an amphibian tetradecapeptide have been previously demonstrated to target these receptors. Therefore, the pan-bombesin analog [β-Ala11, Phe13, Nle14]bombesin-(7–14) was conjugated through a linker to dye-functionalized superparamagnetic iron oxide nanoparticles for the development of a new potential magnetic resonance imaging probe. The peptide was conjugated via click chemistry, demonstrating a complementary alternative methodology to conventional peptide-nanoparticle conjugation strategies. The peptide-functionalized nanoparticles were then demonstrated to be selectively taken up by PC-3 prostate cancer cells relative to unfunctionalized nanoparticles and this uptake was inhibited by the presence of free peptide, confirming the specificity of the interaction. This study suggests that these nanoparticles have the potential to serve as magnetic resonance imaging probes for the detection of prostate cancer.


Iron oxide Nanoparticles Bombesin Prostate cancer Magnetic resonance imaging Nanomedicine 

Supplementary material

11051_2009_9681_MOESM1_ESM.pdf (140 kb)
Supplementary material 1 (PDF 139 kb)


  1. Alonzi R, Padhani AR, Allen C (2007) Dynamic contrast enhanced MRI in prostate cancer. Eur J Radiol 63:335–350CrossRefPubMedGoogle Scholar
  2. American Cancer Society (2007) Cancer facts and figures 2007. American Cancer Society, Atlanta, p 54Google Scholar
  3. Ametamey SM, Honer M, Schubiger PA (2008) Molecular imaging with PET. Chem Rev 108:1501–1516CrossRefPubMedGoogle Scholar
  4. Baidoo KE, Lin KS, Zhan Y, Finley P, Scheffel U, Wagner HN Jr (1998) Design, synthesis, and initial evaluation of high-affinity technetium bombesin analogues. Bioconjug Chem 9:218–225CrossRefPubMedGoogle Scholar
  5. Basilion JP, Yeon S, Botnar R (2005) Magnetic resonance imaging: utility as a molecular imaging modality. Curr Top Dev Biol 70:1–33CrossRefPubMedGoogle Scholar
  6. Broccardo M, Falconieri Erspamer G, Melchiorri P, Negri L (1975) Relative potency of bombesin-like peptides. Br J Pharmacol 5:221–227Google Scholar
  7. Cai W, Chen X (2008) Multimodality molecular imaging of tumor angiogenesis. J Nucl Med 49:113S–128SCrossRefPubMedMathSciNetGoogle Scholar
  8. Caravan P, Ellison JJ, McMurry TJ, Lauffer RB (1999) Gadolinium (III) chelates as MRI contrast agents: structure, dynamics, and applications. Chem Rev 99:2293–2352CrossRefPubMedGoogle Scholar
  9. Chodak GW, Keller P, Schoenberg HW (1989) Assessment of screening for prostate cancer using the digital rectal exam. J Urol 141:1136–1138Google Scholar
  10. Girard F, Bachelard H, St-Pierre S, Rioux F (1984) The contractile effect of bombesin, gastrin releasing peptide and various fragments in the rat stomach strip. Eur Pharmacol 102:489–497CrossRefGoogle Scholar
  11. Heijmink SW, Futterer JJ, Hambrock T, Takahashi S, Scheenen TWJ, Huisman HJ, Hulsbergen-Van de Kaa CA, Knipscheer BC, Kiemeney LAL, Witjes JA, Barentsz JO (2007) Prostate cancer: Body-array versus endorectal coil MR imaging at 3 T—comparison of image quality, localization, and staging performance. Radiology 244:184–195CrossRefPubMedGoogle Scholar
  12. Hoffman TJ, Gali H, Smith CJ, Sieckman GL, Hayes DL, Owen NK, Volkert WA (2003) Novel series of 111In-labeled bombesin analogs as potential radiopharmaceuticals for specific targeting of gastrin-releasing peptide receptors expressed on human prostate cancer cells. J Nuc Med 44:823–831Google Scholar
  13. Hosseinkhani H, Hosseinkhani M (2009) Biodegradable polymer-metal complexes for gene and drug delivery. Curr Drug Safety 4:79–83CrossRefGoogle Scholar
  14. Huzjan R, Sala E, Hricak H (2005) Magnetic resonance imaging and magnetic resonance spectroscopic imaging of prostate cancer. Nat Clin Prac Urol 2:434–442CrossRefGoogle Scholar
  15. Ikonen S, Karkkainen P, Kivisaari L, Salo JO, Taari K, Vehmas T, Tervahartiala P, Rannikko S (2001) Endorectal magnetic resonance imaging of prostatic cancer: Comparison between fat-suppressed T2-weighted fast spin echo and three-dimensional dual-echo, steady-state sequences. Eur Radiol 11:236–241CrossRefPubMedGoogle Scholar
  16. Jobsis FF (1977) Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science 198:1264–1267CrossRefPubMedADSGoogle Scholar
  17. Josephson L, Tung C, Moore A, Weissleder R (1999) High-efficiency intracellular magnetic labeling with novel superparamagnetic-Tat peptide conjugates. Bioconjug Chem 10:186–191CrossRefPubMedGoogle Scholar
  18. Jun Y, Lee J, Cheon J (2008) Chemical design of nanoparticle probes for high-performance magnetic resonance imaging. Angew Chem Int Ed Engl 47:5122–5135CrossRefPubMedGoogle Scholar
  19. Kelly KA, Setlur S, Ross R, Anbazhagan R, Waterman P, Rubin MA, Weissleder R (2008) Detection of early prostate cancer using a hepsin-targeted imaging agent. Cancer Res 68:2286–2291CrossRefPubMedGoogle Scholar
  20. Kirkham AP, Emberton M, Allen C (2006) How good is MRI at detecting and characterising cancer within the prostate? Eur Urol 50:1163–1174CrossRefPubMedGoogle Scholar
  21. Kolb HC, Sharpless KB (2003) The growing impact of click chemistry on drug discovery. Drug Disc Today 8:1128–1137CrossRefGoogle Scholar
  22. La Bella R, Garcia-Garayoa E, Bahler M, Blauenstein P, Schibli R, Conrath P, Tourwe D, Schibiger PA (2002) A 99mTc(I)-postlabeled high affinity bombesin analogue as a potential tumor imaging agent. Bioconjug Chem 13:599–604CrossRefPubMedGoogle Scholar
  23. Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108:2064–2110CrossRefPubMedGoogle Scholar
  24. Lewis JD, Destito G, Zijlstra A, Gonzalez MJ, Quigley JP, Manchester M, Stuhlmann H (2006) Viral nanoparticles as tools for intravital vascular imaging. Nat Med 12:354–360CrossRefPubMedGoogle Scholar
  25. Lutz J, Zarafshani Z (2008) Efficient construction of therapeutics, bioconjugates, biomaterials and bioactive surfaces using azide-alkyne “click” chemistry. Adv Drug Deliv Rev 60:958–970CrossRefPubMedGoogle Scholar
  26. Mantey SA, Weber HC, Sainz E, Akeson M, Ryan RR, Pradhan TK, Searles RP, Spindel ER, Battey JF, Coy DH, Jensen RT (1997) Discovery of a high affinity radioligand for the human orphan receptor, bombesin receptor subtype 3, which deomonstrates that it has a unique pharmacology compared with other mammalian bombesin receptors. J Biol Chem 272:26062–26071CrossRefPubMedGoogle Scholar
  27. Martin AL, Bernas L, Foster PF, Rutt BK, Gillies ER (2008) Enhanced cell uptake of superparamagnetic iron oxide nanoparticles functionalized with dendritic guanidines. Bioconjug Chem 19:2375–2384CrossRefPubMedGoogle Scholar
  28. Molday RS, MacKenzie D (1982) Immunospecific ferromagnetic iron-dextran reagents for the labeling and magnetic separation of cells. J Immunol Methods 52:353–367CrossRefPubMedGoogle Scholar
  29. Montet X, Weissleder R, Josephson L (2006) Imaging pancreatic cancer with a peptide-nanoparticle conjugate targeted to normal pancreas. Bioconjug Chem 17:905–911CrossRefPubMedGoogle Scholar
  30. Nam RK, Toi A, Klotz LH, Trachtenberg J, Jewett MAS, Appu S, Loblaw AD, Sugar L, Narod SA, Kattan MW (2007) Assessing individual risk for prostate cancer. J Clin Oncol 25:3582–3588CrossRefPubMedGoogle Scholar
  31. Padhani AR, Gapinski CJ, Macvicar DA, Parker GJ, Suckling J, Revell PB, Leach MO, Dearnaley DP, Husband JE (2000) Dynamic contrast enhanced MRI of prostate cancer:correlation with morphology and tumour stage, histological grade and PSA. Clin Radiol 55:99–109CrossRefPubMedGoogle Scholar
  32. Patel O, Shulkes A, Baldwin GS (2006) Gastrin releasing peptide and cancer. Biochim Biophys Acta 1766:23–41PubMedGoogle Scholar
  33. Pittet MJ, Swirski PK, Reynolds F, Josephson L, Weissleder R (2006) Labeling of immune cells for in vivo imaging using magnetofluorescent nanoparticles. Nat Protoc 1:73–78CrossRefPubMedGoogle Scholar
  34. Pradhan TK, Katsuno T, Taylor JE, Kim SH, Ryan RR, Mantey SA, Donohue PJ, Weber HC, Sainz E, Battey JF, Coy DH, Jensen RT (1998) Identification of a unique ligand which has high affinity for all four bombesin receptor subtypes. Eur J Pharm 343:275–287CrossRefGoogle Scholar
  35. Reubi JC, Wenger S, Schmuckli-Maurer J, Schaer JC, Gigger M (2002) Bombesin receptor subtypes in human cancers: Detection with the universal radioligand I-125-[D-TYR6, beta-ALA(11), PHE13, NLE14] bombesin(6-14). Clin Cancer Res 8:1139–1146PubMedGoogle Scholar
  36. Reynolds F, Weissleder R, Josephson L (2005) Protamine as an efficient membrane-translocating peptide. Bioconjug Chem 16:1240–1245CrossRefPubMedGoogle Scholar
  37. Rogers BE, Bigott HM, McCarthy DW, Della Manna D, Kim J, Sharp TL, Welch MJ (2003) MicroPET imaging of a gastrin-releasing peptide receptor-positive tumor in a mouse model of human prostate cancer using a 64Cu-labeled bombesin analogue. Bioconjug Chem 14:756–763CrossRefPubMedGoogle Scholar
  38. Serada RE, Adolphi NL, Bisoffi M, Sillerud LO (2007) Targeting and cellular trafficking of magnetic nanoparticles for prostate cancer imaging. Mol Imaging 6:277–288Google Scholar
  39. Smith CJ, Sieckman GL, Owen NK, Hayes DL, Mazuru DG, Kannan R, Volkert WA, Hoffman TJ (2003) Radiochemical investigations of gastrin-releasing peptide receptor-specific [99mTc(X)(CO)3-Dpr-Ser-Ser-Ser-Gln-Trp-Ala-Val-Gly-His-Leu-Met-NH2] in PC-3, tumor-bearing rodent models; syntheses, radiolabeling, and in vitro/in vivo studies where Dpr = 2, 3-diaminopropionic acid and X = H2O or P(CH2OH)3. Cancer Res 63:4082–4088PubMedGoogle Scholar
  40. Song HT, Choi JS, Huh YM, Kim S, Jun YW, Suh JS, Cheon J (2005) Surface modulation of magnetic nanocrystals in the development of highly efficient magnetic resonance probes for intracellular labeling. J Am Chem Soc 127:9992–9993CrossRefPubMedGoogle Scholar
  41. Sun B, Schally AV, Halmos G (2000) The presence of receptors for bombesin/GRP and mRNA for three receptor subtypes in human ovarian epithelial Cancers. Regul Pept 90:77–84CrossRefPubMedGoogle Scholar
  42. Sun EY, Josephson L, Weissleder R (2006) “Clickable” nanoparticles for targeted imaging. Mol Imaging 5:122–128PubMedGoogle Scholar
  43. Tanimoto A, Nakashima J, Kohno H, Shinmoto H, Kuribayashi S (2007) Prostate cancer screening: The clinical value of diffusion-weighted imaging and dynamic MR imaging in combination with T2-weighted imaging. J Magn Reson Imaging 25:146–152CrossRefPubMedGoogle Scholar
  44. Van de Wiele C, Dumont F, Vanden Broecke R, Oosterlinck W, Cocquyt V, Serreyn R, Peers S, Thronback J, Slegers G, Dierckx RA (2000) Technetium-99m RP527, a GRP analogue for visualization of GRP receptor-expressing malignancies: a feasibility study. Eur J Nuc Med 27:1694–1699CrossRefGoogle Scholar
  45. Van de Wiele CV, Dumont F, Dierckx RA, Peers SH, Thornback JR, Slegers G (2001) Biodistribution and dosimetry of 99mTc-RP527, a gastrin-releasing peptide (GRP) agonist for the visualization of GRP receptor-expressing malignancies. J Nucl Med 42:1722–1727PubMedGoogle Scholar
  46. Wang AZ, Bagalkot V, Vasilliou CC, Gu F, Alexis F, Zhang L, Shaikh M, Yuet K, Cima MJ, Langer R, Kantoff PW, Bander NH, Jon S, Farokhzad OC (2008) Superparamagnetic iron oxide nanoparticle-aptamer bioconjugates for combined prostate cancer imaging and therapy. ChemMedChem 3:1131–1315Google Scholar
  47. Weissleder R, Pittet MJ (2008) Imaging in the era of molecular oncology. Nature 452:580–589CrossRefPubMedADSGoogle Scholar
  48. White MA, Johnson JA, Koberstein JT, Turro NJ (2006) Toward the syntheses of universal ligands for metal oxide surfaces: controlling surface functionality through click chemistry. J Am Chem Soc 128:11356–11357CrossRefPubMedGoogle Scholar
  49. Willmann JK, van Bruggen N, Dinkelborg LM, Gambhir SS (2008) Molecular imaging in drug development. Nat Rev Drug Discov 7:591–607CrossRefPubMedGoogle Scholar
  50. Zapotoczna A, Sasso G, Simpson J, Roach M (2007) Current role and future perspectives of magnetic resonance spectroscopy in radiation oncology for prostate cancer. Neoplasia 9:455–463CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Amanda L. Martin
    • 1
  • Jennifer L. Hickey
    • 1
  • Amber L. Ablack
    • 3
  • John D. Lewis
    • 3
    • 5
  • Leonard G. Luyt
    • 1
    • 3
    • 4
  • Elizabeth R. Gillies
    • 1
    • 2
  1. 1.Department of ChemistryThe University of Western OntarioLondonCanada
  2. 2.Department of Chemical and Biochemical EngineeringThe University of Western OntarioLondonCanada
  3. 3.Department of OncologyThe University of Western OntarioLondonCanada
  4. 4.Department of Medical ImagingThe University of Western OntarioLondonCanada
  5. 5.Department of Medical BiophysicsThe University of Western OntarioLondonCanada

Personalised recommendations