Comparison of four mobility particle sizers with different time resolution for stationary exposure measurements

  • Christof Asbach
  • Heinz Kaminski
  • Heinz Fissan
  • Christian Monz
  • Dirk Dahmann
  • Sonja Mülhopt
  • Hanns R. Paur
  • Heinz J. Kiesling
  • Friedhelm Herrmann
  • Matthias Voetz
  • Thomas A. J. Kuhlbusch
Special Issue: Environmental and Human Exposure of Nanomaterials

Abstract

Exposure to airborne ultrafine and nanoparticles has raised increased interest over the recent years as they may cause adverse health effects. A common way to quantify exposure to airborne particles is to measure particle number size distributions through electrical mobility analysis. Four mobility particle sizers have been subject to a detailed intercomparison study, a TSI Fast Mobility Particle Sizer (FMPS), a Grimm Sequential Mobility Particle Sizer (SMPS+C), and two TSI Scanning Mobility Particle Sizers (SMPSs), equipped with two different condensation particle counters (CPC). The instruments were challenged with either NaCl or diesel soot particles. The results indicate that the sizing of all tested instrument was similar with only the FMPS size distributions consistently shifted toward smaller particle sizes. The Grimm SMPS generally measured higher concentrations and broader distributions than the TSI instruments. The two Grimm DMAs agreed well with each other; however, the TSI SMPS results showed a reproducible dependence on the flow rates. While TSI and Grimm SMPS delivered consistent results for sodium chloride (NaCl) and diesel soot, the FMPS seemed to react differently to the changing particle source than the SMPSs, which may be caused by either the different morphology or particle size dependent effects. For NaCl particles, the FMPS delivered the narrowest distributions and concentrations comparable with TSI SMPSs, whereas for diesel soot, it delivered the broadest distributions and higher concentrations than TSI SMPSs.

Keywords

Electrical mobility Particle sizer SMPS FMPS Engineered nanoparticles EHS 

References

  1. Atkinson RW, Anderson HR, Sunyer J, Ayres J, Baccini M, Vonk JM, Boumghar A, Forastiere F, Forsberg B, Touloumi G, Schwartz J, Katsouyanni K (2001) Accute effects of particulate air pollution on respiratory admissions—Results from the APHEA 2 project. Am J Resp Crit Care 164:1860–1866Google Scholar
  2. Cunningham E (1910) On the velocity of steady fall of spherical particles through fluid medium. Proc R Soc London Ser A 83:357–365CrossRefADSGoogle Scholar
  3. Dahmann D, Riediger G, Schletter J, Wiedensohler A, Carli S, Graff A, Grosser M, Hojgr M, Horn HG, Matter U, Monz C, Mosimann T, Stein H, Wehner B, Wieser U (2001) Intercomparison of mobility particle sizers (MPS). Gefahrst Reinhalt Luft 61:423–427Google Scholar
  4. Dockery DW, Pope CA, Xu X, Spengler JD, Ware JH, Fay ME, Ferris BG, Speizer FE (1993) An association between air pollution and mortality in six U.S. cities. New Engl J Med 329:1753–1759PubMedCrossRefGoogle Scholar
  5. Donaldson K, Li XY, Macnee W (1998) Ultrafine (nanometer) particle mediated lung injury. J Aerosol Sci 29:553–560CrossRefGoogle Scholar
  6. Fissan H, Helsper C, Thielen HJ (1983) Determination of particle size distributions by means of an electrostatic classifier. J Aerosol Sci 14:354–357CrossRefGoogle Scholar
  7. Fuchs NA (1963) On the stationary charge distribution on aerosol particles in bipolar ionic atmosphere. Geofis Pura Appl 56:185–193CrossRefADSGoogle Scholar
  8. Gormley PG, Kennedy M (1949) Diffusion from a stream flowing through a cylindrical tube. Proc R Irish Acad 52A:163–169MathSciNetGoogle Scholar
  9. Hämeri K, Koponen IK, Aalto PP, Kulmala M (2002) Technical note: the particle detection efficiency of the TSI-3007 condensation particle counter. J Aerosol Sci 33:1463–1469CrossRefGoogle Scholar
  10. Harris SJ, Maricq MM (2001) Signature size distributions for diesel and gasoline engine exhaust particulate matter. J Aerosol Sci 32:749–764CrossRefGoogle Scholar
  11. Heim M, Kasper G, Reischl GP, Gerhart C (2004) Performance of a new commercial electrical mobility spectrometer. Aerosol Sci Technol 38:3–14CrossRefGoogle Scholar
  12. Helsper C, Horn HG, Schneider F, Wehner B, Wiedensohler A (2008) Intercomparison of five mobility particle size spectrometers for measuring atmospheric submicrometer aerosol particles. Gefahrst Reinhalt Luft 68:475–481Google Scholar
  13. Hering SV, Stolzenburg MR, Quant FR, Oberreit DR, Keady PB (2005) A laminar-flow, water-based condensation particle counter (WCPC). Aerosol Sci Technol 39:659–672CrossRefGoogle Scholar
  14. Hinds WC (1999) Aerosol technology: properties, behavior, and measurement of airborne particles. Wiley, New YorkGoogle Scholar
  15. Hoppel WA (1978) Determination of the aerosol size distribution from the mobility distribution of the charged fractions of aerosols. J Aerosol Sci 9:41–54CrossRefGoogle Scholar
  16. Jeong CH, Evans GJ (2009) Inter-comparison of a fast mobility particle sizer and a scanning mobility particle sizer incorporating an ultrafine water-based condensation particle counter. Aerosol Sci Technol 43:364–373CrossRefGoogle Scholar
  17. Johnson T, Caldow R, Pöcher A, Mirme A, Kittelson D (2003) An engine exhaust particle sizer spectrometer for transient emission particle measurements. In: 9th Diesel Engine Emissions Reduction (DEER) Workshop 2003, Newport, RI, USAGoogle Scholar
  18. Kim JH, Mulholland GW, Kukuck SR, Pui DYH (2005) Slip correction measurements of certified PSL nanoparticles using a nanometer differential mobility analyzer (Nano-DMA) for Knudsen number from 0.5 to 83. J Res Natl Inst Stand Technol 110:31Google Scholar
  19. Kinney PD, Pui DYH, Mulholland GW, Bryner NP (1991) Use of the electrostatic classification method to size 0.1 μm SRM particles—a feasibility study. J Res Natl Inst Stand Technol 96:147–176Google Scholar
  20. Knutson EO, Whitby KT (1975) Aerosol classification by electrical mobility analysis: apparatus, theory, and applications. J Aerosol Sci 6:443–451CrossRefGoogle Scholar
  21. Koch W, Pohlmann G, Schwarz K (2008) A reference number concentration generator for ultrafine aerosols based on Brownian coagulation. J Aerosol Sci 39:150–155CrossRefGoogle Scholar
  22. Kreyling WG, Semmler M, Erbe F, Mayer P, Takenaka S, Schulz H, Oberdörster G, Ziesenis A (2002) Translocation of ultrafine insoluble iridium particles from lung epithelium to extrapulmonary organs is size dependent but very low. J Toxicol Env Health 65:1513–1530CrossRefGoogle Scholar
  23. Kuhlbusch TAJ, Fissan H (2006) Particle characteristics in the reactor and pelletizing areas of carbon black production. J Occup Env Hyg 3:558–567CrossRefGoogle Scholar
  24. Kuhlbusch TAJ, Neumann S, Fissan H (2004) Number size distribution, mass concentration, and particle composition of PM1, PM2.5 and PM10 in bagging areas of carbon black production. J Occup Env Hyg 1:660–671CrossRefGoogle Scholar
  25. Kuhlbusch TAJ, Fissan H, Asbach C (2009) Nanotechnologies and environmental risks. In: Linkov I, Steevens J (eds) Nanomaterials: risks and benefits. Springer, Berlin, pp 233–243Google Scholar
  26. Lall AA, Friedlander SK (2006) On-line measurement of ultrafine aggregate surface area and volume distributions by electrical mobility analysis: I. Theoretical analysis. J Aerosol Sci 37:260CrossRefGoogle Scholar
  27. Lall AA, Seipenbusch M, Friedlander SK (2006) On-line measurement of ultrafine aggregate surface area and volume distributions by electrical mobility analysis: II. Comparison of measurements and theory. J Aerosol Sci 37:272CrossRefGoogle Scholar
  28. Matson U, Ekberg LE, Afshari A (2004) Measurement of ultrafine particles: a comparison of two handheld condensation particle counters. Aerosol Sci Technol 38:487–495CrossRefGoogle Scholar
  29. Mirme A, Tamm E (1991) Comparison of sequential and parallel measurement principles in aerosol spectrometry. J Aerosol Sci 22S(1):S331–S334CrossRefGoogle Scholar
  30. Mirme A, Tamm E (1993) Electric aerosol spectrometer. Calibration and error account. J Aerosol Sci 24S(1):S211–S212CrossRefGoogle Scholar
  31. Mulholland GW, Donnelly MK, Hagwood CR, Kukuck SR, Hackley VA, Pui DYH (2006) Measurement of 100 nm and 60 nm particle standards by differential mobility analysis. J Res Natl Inst Stand Technol 111:257–312Google Scholar
  32. Oberdörster G (2000) Toxicology of ultrafine particles: in vivo studies. Philos Trans R Soc Lond A 358:2719–2740CrossRefADSGoogle Scholar
  33. Oberdörster G, Sharp Z, Atudorei V, Elder A, Gelein R, Kreyling W, Cox C (2004) Translocation of inhaled ultrafine particles to the brain. Inhal Toxicol 16:437–445PubMedCrossRefGoogle Scholar
  34. Oh H, Park H, Kim S (2004) Effect of particle shape on the unipolar diffusion charging of nonspherical particles. Aerosol Sci Technol 38:1045–1053Google Scholar
  35. Park K, Cao F, Kittelson DB, McMurry PH (2003) Relationship between particle mass and mobility for diesel exhaust particles. Environ Sci Technol 37:577–583PubMedCrossRefGoogle Scholar
  36. Peters A, Wichmann HE, Tuch T, Heinrich J, Heyder J (1997) Respiratory effects are associated with the number of ultrafine particles. Am J Resp Crit Care 155:1376–1383Google Scholar
  37. Pui YH, Liu BYH (1974) A submicron aerosol standard and the primary absolute calibration of the condensation nuclei counter. J Colloid Interface Sci 47:155–171CrossRefGoogle Scholar
  38. Reineking A, Porstendörfer J (1986) Measurement of particle loss functions in a differential mobility analyzer (TSI, Model 3071) for different flow rates. Aerosol Sci Technol 27:483–486Google Scholar
  39. Soderholm SC (1979) Analysis of diffusion battery data. J Aerosol Sci 10:163–175CrossRefGoogle Scholar
  40. Tammet H, Mirme A, Tamm E (1998) Electrical aerosol spectrometer of Tartu University. J Aerosol Sci 29S(1):S427–S428CrossRefGoogle Scholar
  41. Virtanen AKK, Ristimki JM, Vaaraslahti KM, Keskinen J (2004) Effect of engine load on diesel soot particles. Environ Sci Technol 38:2551–2556PubMedCrossRefGoogle Scholar
  42. Wang SC, Flagan RC (1990) Scanning electrical mobility spectrometer. Aerosol Sci Technol 13:230–240CrossRefGoogle Scholar
  43. Wang J, Flagan RC, Seinfeld JH (2002) Diffusional losses in particle sampling systems containing bends and elbows. J Aerosol Sci 33:843–857CrossRefGoogle Scholar
  44. Wen HY, Reischl GP, Kasper G (1984) Bipolar diffusion charging of fibrous aerosol particles—II. Charge and electrical mobility measurements on linear chain aggregates. J Aerosol Sci 15:103–122CrossRefGoogle Scholar
  45. Wiedensohler A (1988) An approximation of the bipolar charge distribution for particles in the submicron size range. J Aerosol Sci 19:387–389CrossRefGoogle Scholar
  46. Winklmayr W, Reischl GP, Lindner AO, Berner A (1991) A new electromobility spectrometer for the measurement of aerosol size distributions in the size range from 1 to 1000 nm. J Aerosol Sci 22:289–296CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Christof Asbach
    • 1
  • Heinz Kaminski
    • 1
  • Heinz Fissan
    • 1
  • Christian Monz
    • 2
  • Dirk Dahmann
    • 2
  • Sonja Mülhopt
    • 3
  • Hanns R. Paur
    • 3
  • Heinz J. Kiesling
    • 4
  • Friedhelm Herrmann
    • 4
  • Matthias Voetz
    • 4
  • Thomas A. J. Kuhlbusch
    • 1
  1. 1.Institut für Energie- und Umwelttechnik (IUTA)DuisburgGermany
  2. 2.Institut für Gefahrstoffforschung (IGF)BochumGermany
  3. 3.Forschungszentrum KarlsruheEggenstein-LeopoldshafenGermany
  4. 4.Bayer Technology Services GmbHLeverkusenGermany

Personalised recommendations