Advertisement

Journal of Nanoparticle Research

, Volume 12, Issue 2, pp 551–562 | Cite as

Economic assessment of single-walled carbon nanotube processes

  • J. A. Isaacs
  • A. Tanwani
  • M. L. Healy
  • L. J. Dahlben
Research Paper

Abstract

The carbon nanotube market is steadily growing and projected to reach $1.9 billion by 2010. This study examines the economics of manufacturing single-walled carbon nanotubes (SWNT) using process-based cost models developed for arc, CVD, and HiPco processes. Using assumed input parameters, manufacturing costs are calculated for 1 g SWNT for arc, CVD, and HiPco, totaling $1,906, $1,706, and $485, respectively. For each SWNT process, the synthesis and filtration steps showed the highest costs, with direct labor as a primary cost driver. Reductions in production costs are calculated for increased working hours per day and for increased synthesis reaction yield (SRY) in each process. The process-based cost models offer a means for exploring opportunities for cost reductions, and provide a structured system for comparisons among alternative SWNT manufacturing processes. Further, the models can be used to comprehensively evaluate additional scenarios on the economics of environmental, health, and safety best manufacturing practices.

Keywords

Single-walled nanotube (SWNT) Nanotubes Manufacturing Economics Production cost 

Notes

Acknowledgments

This study was supported in part by National Science Foundation awards SES-0404114 and EEC-0425826 through the Nanoscale Science and Engineering Center for High-rate Nanomanufacturing at Northeastern University. The authors thank Zeynep Ok for discussions and her contributions to Table 1.

References

  1. Baughman RH, Zakhidov AA et al (2002) Carbon nanotubes––the route toward applications. Science 297(5582):787–792. doi: 10.1126/science.1060928 CrossRefPubMedADSGoogle Scholar
  2. Berber S, Kwon Y-K et al (2000) Unusually high thermal conductivity of carbon nanotubes. Phys Rev Lett 84:4613. doi: 10.1103/PhysRevLett.84.4613 CrossRefPubMedADSGoogle Scholar
  3. Bronikowski MJ, Willis PA et al (2001) Gas-phase production of carbon single-walled nanotubes from carbon monoxide via the HiPco process: a parametric study, AVS. J Vac Sci Technol A 19(4):1800–1805. doi: 10.1116/1.1380721 Google Scholar
  4. Busch J (1994) Cost modeling as a technical management tool. Res Technol Manag 37(6):50–56MathSciNetGoogle Scholar
  5. Chiango DA, Isaacs JA et al (2000) Production of steel powder by rotating electrode processes: economic analyses. Int J Powder Metall 36(4):49–56Google Scholar
  6. Clark JP, Field FR et al (1997) Techno-economic issues in materials selection. ASM Handb Mater Sel Des 20:255–265Google Scholar
  7. Daenen M, de Fouw RD et al (2003) The wondrous world of carbon nanotubes. Eindhoven University of Technology, EindhovenGoogle Scholar
  8. EIA (2007) Energy Information Administration: Electricity InfoCard 2006. http://www.eia.doe.gov/bookshelf/brochures/electricityinfocard/elecinfocard2006/elecinfocard.html
  9. Flahaut E, Peigney A et al (2000) Synthesis of single-walled carbon nanotube–Co–MgO composite powders and extraction of the nanotubes. J Mater Chem 10(2):249–252. doi: 10.1039/a908593i CrossRefGoogle Scholar
  10. Global Industry Analysts I (2007). Carbon nanotubes: a Global strategic business report IV-1-IV-199Google Scholar
  11. Hamada N, Sawada S-i et al (1992) New one-dimensional conductor: graphite microtubules. Phys Rev Lett 68(10):1579–1581. doi: 10.1103/PhysRevLett.68.1579 CrossRefPubMedADSGoogle Scholar
  12. Harris PJF (1999) Carbon nanotubes and related structures. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  13. Healy M (2006) Environmental and economic comparison of single-wall carbon nanotube production alternatives. MS thesis, Mechanical and Industrial Engineering, Northeastern University, Boston, MAGoogle Scholar
  14. Healy ML, Isaacs JA et al (2006) Economic and environmental tradeoffs of SWNT production. NSTI-Nanotech 2006, Boston, MAGoogle Scholar
  15. Healy ML, Dahlben LJ et al (2008) Environmental assessment of single-walled carbon nanotube processes. J Ind Ecol 12(3):376–393. doi: 10.1111/j.1530-9290.2008.00058.x CrossRefGoogle Scholar
  16. Kirchain R (2001) Cost modeling of materials and manufacturing processes. Encyclopedia of material science and engineering. E. S. Ltd, pp 1718–1727Google Scholar
  17. Kociak M, Kasumov A et al (2002) Intrinsic superconductivity in ropes of carbon nanotubes. American Institute of Physics, New York, pp 237–241Google Scholar
  18. Liu BC, Lyu SC et al (2004) Single-walled carbon nanotubes produced by catalytic chemical vapor deposition of acetylene over Fe–Mo/MgO catalyst. Chem Phys Lett 383(1–2):104–108. doi: 10.1016/j.cplett.2003.10.134 CrossRefADSGoogle Scholar
  19. Lux Research (2006) The nanotech report, 4th edn. Lux Research Inc., New York, NYGoogle Scholar
  20. Nikolaev P, Bronikowski MJ et al (1999) Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide. Chem Phys Lett 313(1–2):91–97. doi: 10.1016/S0009-2614(99)01029-5 CrossRefADSGoogle Scholar
  21. NNI (2008) FY 2009 Budget and Highlights. National Nanotechnology InitiativeGoogle Scholar
  22. Ok ZD, Benneyan JC et al (2008) Risk analysis modeling of production costs and occupational health exposure of single-wall carbon nanotube manufacturing. J Ind Ecol 12(3):411–434. doi: 10.1111/j.1530-9290.2008.00030.x CrossRefGoogle Scholar
  23. Seo JW, Couteau E et al (2003) Synthesis and manipulation of carbon nanotubes. N J Phys 5(120):1–22Google Scholar
  24. Tanaka K, Yamabe T et al (1999) The science and technology of carbon nanotubes. Elsevier, TokyoGoogle Scholar
  25. Tang S, Zhong Z et al (2001) Controlled growth of single-walled carbon nanotubes by catalytic decomposition of CH4 over Mo/Co/MgO catalysts. Chem Phys Lett 350(1–2):19–26. doi: 10.1016/S0009-2614(01)01183-6 CrossRefADSGoogle Scholar
  26. Tanwani A (2005) Carbon nanotube production: an economic and environmental assessment of alternative technologies. MS Thesis, Mechanical and Industrial Engineering, Northeastern University, Boston, MAGoogle Scholar
  27. Treacy MMJ, Ebbesen TW et al (1996) Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381(6584):678–680. doi: 10.1038/381678a0 CrossRefADSGoogle Scholar
  28. Zheng B, Li Y et al (2002) CVD synthesis and purification of single-walled carbon nanotubes on aerogel-supported catalyst. Appl Phys, A Mater Sci Process 74:345–348. doi: 10.1007/s003390201275 CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • J. A. Isaacs
    • 1
    • 2
  • A. Tanwani
    • 1
    • 3
  • M. L. Healy
    • 1
    • 4
  • L. J. Dahlben
    • 1
  1. 1.NSF Center for High-rate NanomanufacturingNortheastern UniversityBostonUSA
  2. 2.Mechanical and Industrial EngineeringNortheastern UniversityBostonUSA
  3. 3.Infojini Solutions Inc.MarylandUSA
  4. 4.Babcock Power Inc.WorcesterUSA

Personalised recommendations