Core–shell nanostructures and nanocomposites of Ag@TiO2: effect of capping agent and shell thickness on the optical properties

Abstract

Two different shell-forming reagents viz. titanium isopropoxide and titanium hydroxyacylate, have been employed to obtain core–shell nanostructures of Ag@TiO2. However, nanocomposites were formed when the shell-forming agent, titanium isopropoxide, was added before breaking the micelles. Titanium hydroxyacylate has been used for the first time as a shell-forming agent which resulted in uniform core–shell structures of Ag@TiO2 with core diameter ranging from 10 to 40 nm and a shell thickness of 10–50 nm. The low rate of hydrolysis of titanium hydroxyacylate than titanium isopropoxide (used in other methods) appears to be responsible for the uniform shell thickness. The presence of capping agent (2-mercaptoethanol) disrupts the formation of a uniform shell structure of Ag@TiO2. HRTEM, IR, and XPS studies of Ag@TiO2 synthesized using capping agent show the formation of Ag2S coated with an amorphous layer of TiO2. A red shift of 25 and 10 nm was observed in the surface plasmon band of silver for Ag@TiO2 core–shell structures (compared with that of silver nanoparticles) synthesized using titanium hydroxyacylate and titanium isopropoxide, respectively. The presence of capping agent (2-mercaptoethanol) masks the surface plasmon peak. Photoluminescence studies show an increase in the emission intensity for the core–shell structures when compared to that of TiO2 nanoparticles.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Ahmad T, Ganguli AK (2006) Reverse micellar route to nanocrystalline titanates (SrTiO3, Sr2TiO4 and PbTiO3): structural aspects and dielectric properties. J Am Ceram Soc 89:1326–1332

    Article  CAS  Google Scholar 

  2. Ahmad T, Ramanujachary KV, Lofland SE, Ganguli AK (2004) Nanorods of manganese oxalate: a single source precursor to different manganese oxide nanoparicles (MnO, Mn2O3, Mn3O4). J Mater Chem 14:3406–3410

    Article  CAS  Google Scholar 

  3. Ahmad T, Chopra R, Ramanujachary KV, Lofland SE, Ganguli AK (2005) Nanorods of copper and nickel oxalates synthesized by the reverse micellar route. J Nanosci Nanotech 5:1840–1845

    Article  CAS  Google Scholar 

  4. Ahmad T, Vaidya S, Sarkar N, Ghosh S, Ganguli AK (2006) Zinc oxalate nanorods: a convenient precursor to uniform nanoparticles of ZnO. Nanotechnology 17:1236–1240

    Article  CAS  ADS  Google Scholar 

  5. Battistuzzi R, Peyronel G (1977) Silver (I) Complexes of N-ethylthiourea. An infrared study. Trans Met Chem 2:87–91

    Article  CAS  Google Scholar 

  6. Du J, Zhang J, Liu Z, Han B, Jiang T, Huang Y (2006) Controlled synthesis of Ag/TiO2 core–shell nanowires with smooth and bristled surfaces via a one-step solution route. Langmuir 22:1307–1312

    Article  CAS  PubMed  Google Scholar 

  7. Frindell KL, Bartl MH, Popitsch A, Stucky GD (2002) Sensitized luminescence of trivalent europium by three-dimensionally arranged anatase nanocrystals in mesostructured titania thin films. Angew Chem Int Ed 41:959–962

    Article  CAS  Google Scholar 

  8. Ghosh P, Patra A (2007) Influence of surface coating on physical properties of TiO2/Eu3+ nanocrystals. J Phys Chem C 111:7004–7010

    Article  CAS  Google Scholar 

  9. He S, Yao J, Xie S, Gao H, Pang S (2001) Superlattices of silver nanoparticles passivated by mercaptan. J Phys D 34:3425–3429

    Article  CAS  ADS  Google Scholar 

  10. Hirakawa T, Kamat PV (2004) Photoinduced electron storage and surface plasmon modulation in Ag@TiO2 clusters. Langmuir 20:5645–5647

    Article  CAS  PubMed  Google Scholar 

  11. Hirakawa T, Kamat PV (2005) Charge separation and catalytic activity of Ag@TiO2 core–shell composites clusters under UV-irradiation. J Am Chem Soc 127:1216–1228

    Article  PubMed  Google Scholar 

  12. Kalyaniwalla N, Hhaus JW, Inguva R, Birnboim MH (1990) Intrinsic optical bistability for coated spheroidal particles. Phys Rev A 42(561):3–5621

    Google Scholar 

  13. Kerker M, Blatchford CG (1982) Elastic scattering, absorption, and surface enhanced Raman scattering by concentric spheres comprised of a metallic and a dielectric region. Phys Rev B 26:4052–4063

    Article  CAS  ADS  Google Scholar 

  14. Kim YH, Kang YS, Jo BG (2004) Preparation and characterization of Ag-TiO2 core–shell type nanoparticles. J Ind Eng Chem 10:739–744

    CAS  Google Scholar 

  15. Kiyonaga T, Mitsui T, Torikoshi M, Takekawa M, Soejima T, Tada H (2006) Ultrafast photosynthetic reduction of elemental sulfur by Au nanoparticle-loaded TiO2. J Phys Chem B 110:10771–10778

    Article  CAS  PubMed  Google Scholar 

  16. Li JG, Wang X, Watanabe K, Ishigali T (2006) Phase structure and luminescence properties of Eu3+-doped TiO2 nanocrystals synthesized by Ar/O2 radio frequency thermal plasma oxidation of liquid precursor mists. J Phys Chem B 110:1121–11027

    Article  CAS  PubMed  Google Scholar 

  17. Liao MH, Hsu CH, Chen DH (2006) Preparation and properties of amorphous titania-coated zinc oxide nanoparticles. J Solid State Chem 179:2020–2026

    Article  CAS  ADS  Google Scholar 

  18. Liu HW, Laskar IR, Huang CP, Cheng JA, Cheng SS, Luo LY, Wang HR, Chen TM (2005) Enhanced phosphorescence and electroluminescence in triplet emitters by doping gold into cadmium selenide/zinc sulfide nanoparticles. Thin Solid Films 489:296–302

    Article  CAS  ADS  Google Scholar 

  19. Mulvaney P (1996) Surface plasmon spectroscopy of nanosized metal particles. Langmuir 12:788–800

    Article  CAS  Google Scholar 

  20. Pastoriza-antos I, Koktysh DS, Mamedov AA, Giersig M, Kotov NA, Liz-Marzán LM (2000) One-pot synthesis of Ag@TiO2 core–shell nanoparticles and their layer-by-layer assembly. Langmuir 16:2731–2735

    Article  Google Scholar 

  21. Schultz DA (2003) Plasmon resonant particles for biological detectors. Curr Opin Biotechnol 14:13–22

    Article  CAS  PubMed  MathSciNet  Google Scholar 

  22. Shirkhanzadeh M (1995) XRD and XPS characterization of superplastic TiO2 coatings prepared on Ti6AI4V surgical alloy by an electrochemical method. J Mater Sci 6:206–210

    CAS  Google Scholar 

  23. Teng F, Tian Z, Xiong G, Xu Z (2004) Preparation of CdS-SiO2 core shell particles and hollow SiO2 sphere ranging from nanometers to microns in the nonionic reverse microemulsion. Catal Today 93–95:651–657

    Article  Google Scholar 

  24. Tom RT, Nair AS, Singh N, Aslam M, Nagendra CL, Philip R, Vijayamohanan K, Pradeep T (2003) Freely dispersible Au@TiO2, Au@ZrO2, Ag@TiO2, and Ag@ZrO2 core–shell nanoparticles: one step synthesis, characterization, spectroscopy, and optical limiting properties. Langmuir 19:3439–3445

    Article  CAS  Google Scholar 

  25. Vaidya S, Ahmad T, Agarwal S, Ganguli AK (2007) Nanocrystalline oxalate/carbonate precursors of Ce and Zr and their decompositions to CeO2 and ZrO2 nanoparticles. J Am Ceram Soc 90:863–869

    Article  CAS  Google Scholar 

  26. Zhang D, Song X, Zhang R, Zhang M, Liu F (2005) Preparation and characterization of Ag@TiO2 core shell nanoparticles in water-in-oil emulsions. Eur J Inorg Chem 9:1643–1648

    Article  Google Scholar 

Download references

Acknowledgment

AKG thanks the Nano Science and Technology Initiative, Department of Science & Technology, India and Council of Scientific and Industrial Research, Govt. of India for financial support. SV thanks Council of Scientific and Industrial Research, Govt. of India for a fellowship.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ashok K. Ganguli.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 3145 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vaidya, S., Patra, A. & Ganguli, A.K. Core–shell nanostructures and nanocomposites of Ag@TiO2: effect of capping agent and shell thickness on the optical properties. J Nanopart Res 12, 1033–1044 (2010). https://doi.org/10.1007/s11051-009-9663-5

Download citation

Keywords

  • Core–shell nanostructures
  • Reverse micelles
  • HRTEM
  • EDX
  • Photoluminescence
  • Composite nanomaterials