Skip to main content

Advertisement

Log in

Sonochemical synthesis of nanostructured VOPO4 · 2H2O/carbon nanotube composites with improved lithium ion battery performance

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Transition metal phosphates have become of great interest as cathode materials for lithium ion batteries because of their high voltage, low cost and environmental friendliness. However, their low-intrinsic conductivity presents a major drawback to practical implementation. Here, nanocrystallization of VOPO4 · 2H2O was first realized by a sonication-assisted intercalation-split mechanism in order to increase its diffusion coefficient and surface area contacting with electrolyte thus improving its capacity and cyclability; then nanocompounding of the above split nanocrystals and acid-functionalized multiwalled carbon nanotubes to form the resulting nanocomposites was successfully achieved by an adsorption-reintercalation mechanism to increase their conductivity thus enabling them to discharge at high rate with high efficiency. As expected, nanosized VOPO4 · 2H2O possesses longer discharge plateau (average discharge voltage: 3.7 V), higher capacity (93.4% of the theoretical capacity) and much better cyclability (retain 95.1% of the first discharge capacity after 50 cycles) than microsized VOPO4 · 2H2O. Furthermore, the relatively high-rate capability of the nanocomposites, retaining 83% of the first discharge capacity, is remarkably improved compared with VOPO4 · 2H2O microcrystals (retain only 31.7%). In brief, the use of nanocrystallization and nanocompounding techniques enables the high voltage, low cost, environmentally benign VOPO4 · 2H2O to show the prospective signs for the future practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arico AS, Bruce P, Scrosatl B, Tarascon JM, Schalkwljk WV (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4:366–377. doi:10.1038/nmat1368

    Article  CAS  PubMed  ADS  Google Scholar 

  • Beneš L, Melánová K, Zima V, Kalousová J, Votinský J (1997) Preparation and probable structure of layered complexes of vanadyl phosphate with 1-alkanols and 1, omega-alkanediols. Inorg Chem 36:2850–2854. doi:10.1021/ic970073s

    Article  PubMed  Google Scholar 

  • Beneš L, Melánová K, Trchová M, Čapková P, Matĕjka P (1999) Water/ethanol displacement reactions in vanadyl phosphate. Eur J Inorg Chem 12:2289–2294

    Google Scholar 

  • Beneš L, Zima V, Melánová K (2001) 2-alkanol intercalated VOPO4 and NbOPO4: Structure modeling of intercalate layers. J Incl Phenom Mol Recognit Chem 40:131–138. doi:10.1023/A:1011110326675

    Article  Google Scholar 

  • Beneš L, Melánová K, Zima V, Trchová M, Čapková P, Matĕjka P, Koudelka B (2006) Intercalation of lactones into vanadyl phosphate. J Phys Chem Solids 67:956–964. doi:10.1016/j.jpcs.2006.01.009

    Article  ADS  Google Scholar 

  • Correa-Duarte MA, Sobal N, Liz-Marzán LM, Giersig M (2004) Linear assemblies of silica-coated gold nanoparticles using carbon nanotubes as templates. Adv Mater 16:2179–2184. doi:10.1002/adma.200400626

    Article  CAS  Google Scholar 

  • Delacourt C, Poizot P, Morcrette M, Tarascon JM, Masquelier C (2004) One-step low-temperature route for the preparation of electrochemically active LiMnPO4 powders. Chem Mater 16:93–99. doi:10.1021/cm030347b

    Article  CAS  Google Scholar 

  • Dupré N, Gaubicher J, Le Mercier T, Wallez G, Angenault J, Quarton M (2001) Positive electrode materials for lithium batteries based on VOPO4. Solid State Ion 140:209–221. doi:10.1016/S0167-2738(01)00818-9

    Article  Google Scholar 

  • Ellis B, Herle PS, Rho YH, Nazar LF, Dunlap R, Perry LK, Ryan DH (2007) Nanostructured materials for lithium-ion batteries: surface conductivity vs. bulk ion/electron transport. Faraday Discuss 134:119–141. doi:10.1039/b602698b

    Article  CAS  PubMed  Google Scholar 

  • Gaberscek M, Dominko R, Bele M, Remskar M, Hanzel D, Jamnik J (2005) Porous, carbon-decorated LiFePO4 prepared by sol–gel method based on citric acid. Solid State Ion 176:1801–1805. doi:10.1016/j.ssi.2005.04.034

    Article  CAS  Google Scholar 

  • Goodenough JB, Padhi AK, Masquelier C, Nanjundaswamy KS (1997) U.S. Patent 08:840–523

    Google Scholar 

  • Hu SG, Wang T, Qu XH, Dong SJ (2006) In situ synthesis and characterization of multiwalled carbon nanotube/Au nanoparticle composite materials. J Phys Chem B 110:853–857. doi:10.1021/jp055834o

    Article  CAS  PubMed  Google Scholar 

  • Hu YS, Guo YG, Dominko R, Gaberscek M, Jamnik J, Maier J (2007) Improved electrode performance of porous LiFePO4 using RuO2 as an oxidic nanoscale interconnect. Adv Mater 19:1963–1966. doi:10.1002/adma.200700697

    Article  CAS  Google Scholar 

  • Huang H, Nazar LF (2001) Grafted metal oxide/polymer/carbon nanostructures exhibiting fast transport properties. Angew Chem Int Ed 40:3880–3884. doi:10.1002/1521-3773(20011015)40:20<3880::AID-ANIE3880>3.0.CO;2-V

    Article  CAS  Google Scholar 

  • Kamiya Y, Yamamoto N, Imai H, Komai S, Okuhara T (2005) Mesostructured vanadium phosphorus oxides assembled with exfoliated VOPO4 nanosheets. Microporous Mesoporous Mater 81:49–57

    Article  CAS  Google Scholar 

  • Kim B, Sigmund WM (2004) Functionalized multiwall carbon nanotube/gold nanoparticle composites. Langmuir 20:8239–8242. doi:10.1021/la049424n

    Article  CAS  PubMed  Google Scholar 

  • Kim DW, Ko YD, Park JG, Kim BK (2007) Formation of lithium-driven active/inactive nanocomposite electrodes based on Ca3Co4O9 nanoplates. Angew Chem Int Ed 46:6654–6657. doi:10.1002/anie.200701628

    Article  CAS  Google Scholar 

  • Ladwig G (1965) Über die konstitution des VPO5(·nH2O). Z Anorg Allg Chem 338:266–278. doi:10.1002/zaac.19653380506

    Article  CAS  Google Scholar 

  • Li BX, Xu Y, Rong GX, Jing M, Xie Y (2006) Vanadium pentoxide nanobelts and nanorolls: from controllable synthesis to investigation of their electrochemical properties and photocatalytic activities. Nanotechnology 17:2560–2566. doi:10.1088/0957-4484/17/10/020

    Article  CAS  ADS  Google Scholar 

  • Nanjundaswamy KS, Padhi AK, Goodenough JB, Okada S, Ohtsuka H, Arai H, Yamaki J (1996) Synthesis, redox potential evaluation and electrochemical characteristics of NASICON-related-3D framework compounds. Solid State Ion 92:1–10. doi:10.1016/S0167-2738(96)00472-9

    Article  CAS  Google Scholar 

  • Padhi AK, Nanjundaswamy KS, Googenough JB (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144:1188–1194. doi:10.1149/1.1837571

    Article  CAS  Google Scholar 

  • Park NG, Kim KM, Chang SH (2001) Sonochemical synthesis of the high energy density cathode material VOPO4·2H2O. Electrochem Commun 3:553–556. doi:10.1016/S1388-2481(01)00217-X

    Article  CAS  Google Scholar 

  • Park MS, Needham SA, Wang GX, Kang YM, Park JS, Dou SX, Liu HK (2007) Nanostructured SnSb/carbon nanotube composites synthesized by reductive precipitation for lithium-ion batteries. Chem Mater 19:2406–2410. doi:10.1021/cm0701761

    Article  CAS  Google Scholar 

  • Sides CR, Martin CR (2005) Nanostructured electrodes and the low-temperature performance of Li-ion batteries. Adv Mater 17:125–128. doi:10.1002/adma.200400517

    Article  CAS  Google Scholar 

  • Tietze HR (1981) The crystal and molecular structure of oxovanadium (V) orthophosphate dihydrate, VOPO4·2H2O. Aust J Chem 34:2035–2038

    CAS  Google Scholar 

  • Wang HY, Abe T, Maruyama S, Iriyama Y, Ogumi Z, Yoshikawa K (2005) Graphitized carbon nanobeads with an onion texture as a lithium-ion battery negative electrode for high-rate use. Adv Mater 17:2857–2860. doi:10.1002/adma.200500320

    Article  CAS  Google Scholar 

  • Wen ZH, Wang Q, Zhang Q, Li JH (2007) In situ growth of mesoporous SnO2 on multiwalled carbon nanotubes: A novel composite with porous-tube structure as anode for lithium batteries. Adv Funct Mater 17:2772–2778. doi:10.1002/adfm.200600739

    Article  CAS  Google Scholar 

  • Wu CZ, Xie Y, Lei LY, Hu SQ, OuYang CZ (2006) Synthesis of new-phased VOOH hollow “dandelions” and their application in lithium-ion batteries. Adv Mater 18:1727–1732. doi:10.1002/adma.200600065

    Article  CAS  Google Scholar 

  • Yamamoto N, Okuhara T, Nakato T (2001) Intercalation compound of VOPO4·2H2O with acrylamide: preparation and exfoliation. J Mater Chem 11:1858–1863. doi:10.1039/b100040n

    Article  CAS  Google Scholar 

  • Yamamoto N, Hiyoshi N, Okuhara T (2002) Thin-layered sheets of VOHPO4·5H2O prepared from VOPO4·2H2O by intercalation-exfoliation-reduction in alcohol. Chem Mater 14:3882–3888. doi:10.1021/cm020292y

    Article  CAS  Google Scholar 

  • Zima V, Vlcek M, Beneš L, Casciola M, Massinelli L, Palombari R (1996) Electrical-transport properties of hydrated and anhydrous vanadyl phosphate in the temperature range 20–200 degrees C. Chem Mater 8:2505–2509. doi:10.1021/cm960217l

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (NO.20621061).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Xie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, Y., Wu, C. & Xie, Y. Sonochemical synthesis of nanostructured VOPO4 · 2H2O/carbon nanotube composites with improved lithium ion battery performance. J Nanopart Res 12, 417–427 (2010). https://doi.org/10.1007/s11051-009-9626-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-009-9626-x

Keywords

Navigation