Journal of Nanoparticle Research

, Volume 12, Issue 1, pp 337–345 | Cite as

From silver nanoparticles to nanostructures through matrix chemistry

  • Omar Ayyad
  • David Muñoz-Rojas
  • Judith Oró-Solé
  • Pedro Gómez-Romero
Research Paper

Abstract

Direct in situ reduction of silver ions by a biopolymer such as agar, without any other reducing nor capping agent is shown in this article to lead either to nanoparticles (typically 12(2) nm in an optimized case) or to more complex nanostructures depending on the reaction conditions used. This approach takes advantage of the porous polymer lattice acting as a template and leads to hybrid Ag–Agar materials with long-term synergic stability. Silver acts as an antibacterial agent for agar whereas the biopolymer prevents agglomeration of the inorganic nanoparticles leading to a stable nanocomposite formed by a thermoreversible biopolymer from which silver nanoparticles can eventually be recovered.

Keywords

Agar gel Silver nanoparticles Hybrid nanostructures 

Supplementary material

11051_2009_9620_MOESM1_ESM.pdf (259 kb)
Supplementary material 1 (PDF 256 kb)

References

  1. Akamatsu K, Takei S, Mizuhata M, Kajinami A, Deki S, Takeoka S, Fujii M, Hayashi S, Yamamoto K (2000) Preparation and characterization of polymer thin films containing silver and silver sulfide nanoparticles. Thin Solid Films 359:55–60. doi:10.1016/S0040-6090(99)00684-7 CrossRefADSGoogle Scholar
  2. Akerman B (1999) Affinity gel electrophoresis of DNA. J Am Chem Soc 121:7292–7301. doi:10.1021/ja984154e CrossRefGoogle Scholar
  3. Chen CW, Chen MQ, Serizawa T, Akashi M (1998) In situ formation of silver nanoparticles on poly(N-isopropylacrylamide)-coated polystyrene microspheres. Adv Mater 10:1122–1126. doi:10.1002/(SICI)1521-4095(199810)10:14<1122::AID-ADMA1122>3.0.CO;2-N CrossRefGoogle Scholar
  4. Cole KD, Tellez CM (2002) Separation of large circular DNA by electrophoresis in agarose gels. Biotechnol Prog 18:82. doi:10.1021/bp010135o CrossRefPubMedGoogle Scholar
  5. Costanzo PJ, Beyer FL (2007) Thermally driven assembly of nanoparticles in polymer matrices. Macromolecules 40:3996–4001. doi:10.1021/ma070447t CrossRefADSGoogle Scholar
  6. Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346. doi:10.1021/cr030698+ CrossRefPubMedGoogle Scholar
  7. Deshmukh RD, Composto RJ (2007) Surface segregation and formation of silver nanoparticles created in situ in poly(methyl methacrylate) films. Chem Mater 19:745–754. doi:10.1021/cm062030s CrossRefGoogle Scholar
  8. Dirix Y, Bastiaansen C, Caseri W, Smith P (1999) Oriented Pearl-necklace arrays of metallic nanoparticles in polymers: a new route toward polarization-dependent color filters. Adv Mater 11:223–227. doi:10.1002/(SICI)1521-4095(199903)11:3<223::AID-ADMA223>3.0.CO;2-J CrossRefGoogle Scholar
  9. Dong Y, Ma Y, Zhai T, Shen F, Zeng Y, Fu H, Yao J (2007) Silver nanoparticles stabilized by thermoresponsive microgel particles: synthesis and evidence of an electron donor-acceptor effect. Macromol Rapid Commun 28:2339–2345. doi:10.1002/marc.200700483 CrossRefGoogle Scholar
  10. Elechiguerra JL, Bursa JL, Morones JR, Bragado AC, Gao X, Lara HH, Yacaman ML (2005) Interaction of silver nanoparticles with HIV-1. J Nanobiotechnol 3:6. doi:10.1186/1477-3155-3-6 CrossRefGoogle Scholar
  11. Ganesan M, Freemantle RG, Obare SO (2007) Monodisperse thioether-stabilized palladium nanoparticles: synthesis, characterization, and reactivity. Chem Mater 19:3464–3471. doi:10.1021/cm062655q CrossRefGoogle Scholar
  12. Gómez-Romero P (2001) Hybrid organic-inorganic materials. In search of synergic activity. Adv Mater 13:163–174. doi:10.1002/1521-4095(200102)13:3<163::AID-ADMA163>3.0.CO;2-U CrossRefGoogle Scholar
  13. Gómez-Romero P, Lira-Cantú M (1997) Hybrid organic-inorganic electrodes: the molecular material formed between polypyrrole and the phosphomolybdate anion. Adv Mater 9:144–147. doi:10.1002/adma.19970090210 CrossRefGoogle Scholar
  14. Gómez-Romero P, Torres-Gómez G (2000) Molecular batteries. Harnessing Fe(CN)6 3− electroactivity in hybrid polyaniline-hexacyanoferrate electrodes. Adv Mater 12:1454–1456. doi:10.1002/1521-4095(200010)12:19<1454::AID-ADMA1454>3.0.CO;2-H CrossRefGoogle Scholar
  15. Habas SE, Lee H, Radmilovic V, Somorjai GA, Yang P (2007) Shaping binary metal nanocrystals through epitaxial seeded growth. Nat Mater 6:692–697. doi:10.1038/nmat1957 CrossRefPubMedADSGoogle Scholar
  16. He J, Kunitake T, Nakao A (2003) Facile in situ synthesis of noble metal nanoparticles in porous cellulose fibers. Chem mater 15:4401–4406. doi:10.1021/cm034720r CrossRefGoogle Scholar
  17. Hornebecq V, Antonietti M, Cardinal T, Treguer-Delapierre M (2003) Stable silver nanoparticles immobilized in mesoporous silica. Chem Mater 15:1993–1999. doi:10.1021/cm021353v CrossRefGoogle Scholar
  18. Huang H, Yang X (2004) Synthesis of polysaccharide-stabilized gold and silver nanoparticles: a green method. Carbohydr Res 339:2627–2631. doi:10.1016/j.carres.2004.08.005 CrossRefPubMedGoogle Scholar
  19. Huber K, Witte T, Hollmann J, Keuker-Baumann S (2007) Controlled formation of Ag nanoparticles by means of long-chain sodium polyacrylates in dilute solution. J Am Chem Soc 129:1089–1094. doi:10.1021/ja063368q CrossRefPubMedGoogle Scholar
  20. Jin R, Cao YC, Hao E, Métraux GS, Schatz GC, Mirikin C (2003) Controlling anistropic nanoparticle growth through plasmon excitation. Nature 425:487–490. doi:10.1038/nature02020 CrossRefPubMedADSGoogle Scholar
  21. Kattumuri V, Chandrasekhar M, Guha S (2006) Agarose-stabilized gold nanoparticles for surface-enhanced Raman spectroscopic detection of DNA nucleosides. App Phy Lett 88:153114-(1–3). doi:10.1063/1.2192573 Google Scholar
  22. Kim SW, Park J, Jang Y, Chung Y, Hwang S, Hyeon T (2003) Synthesis of monodisperse palladium nanoparticles. Nano Lett 3:1289–1291. doi:10.1021/nl0343405 CrossRefADSGoogle Scholar
  23. Kusukawa N, Ostrovsky MV, Garner MM (1999) Effect of gelation conditions on the gel structure and resolving power of agarose-based DNA sequencing gels. Electrophoresis 20:1455–1461. doi:10.1002/(SICI)1522-2683(19990601)20:7<1455::AID-ELPS1455>3.0.CO;2-L CrossRefPubMedGoogle Scholar
  24. Lim B, Xiong Y, Xia Y (2007) A water-based synthesis of octahedral, decahedral, and icosahedral Pd nanocrystals. Angew Chem Int Ed 46:9279–9282. doi:10.1002/anie.200703755 CrossRefGoogle Scholar
  25. Lira-Cantú M, Gómez-Romero P (1998) Electrochemical and chemical syntheses of the hybrid organic-inorganic electroactive material formed by phosphomolybdate and polyaniline. Application as cation-insertion electrodes. Chem Mater 10:698–704. doi:10.1021/cm970107u CrossRefGoogle Scholar
  26. Liu Z, Wang H, Li H, Wang X (1998) Red shift of plasmon resonance frequency due to the interacting Ag nanoparticles embedded in single crystal SiO2 by implantation. Appl Phys Lett 72:1823–1825. doi:10.1063/1.121196 CrossRefADSGoogle Scholar
  27. Mbhele ZH, Salemane MG, Van Sittert CGCE, Nedeljković JM, Djoković V, Luyt AS (2003) Fabrication and characterization of silver-polyvinyl alcohol nanocomposites. Chem Mater 15:5019–5024. doi:10.1021/cm034505a CrossRefGoogle Scholar
  28. Mohan YM, Premkumar T, Lee K, Geckeler KE (2006) Fabrication of silver nanoparticles in hydrogel networks. Macromol Rapid Commun 27:1346–1354. doi:10.1002/marc.200600297 CrossRefGoogle Scholar
  29. Mohan YM, Lee K, Premkumar T, Geckeler KE (2007) Hydrogel networks as nanoreactors: a novel approach to silver nanoparticles for antibacterial applications. Polymer 48:158–164. doi:10.1016/j.polymer.2006.10.045 CrossRefGoogle Scholar
  30. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353. doi:10.1088/0957-4484/16/10/059 CrossRefADSGoogle Scholar
  31. Mott D, Galkowski J, Wang L, Luo J, Zhong CJ (2007) Synthesis of size-controlled and shaped copper nanoparticles. Langmuir 23:5740–5745. doi:10.1021/la0635092 CrossRefPubMedGoogle Scholar
  32. Muñoz-Rojas D, Oró-Solé J, Ayyad O, Gómez-Romero P (2008a) Facile one-pot synthesis of self-assembled silver@polypyrrole core/shell nanosnakes. Small 4:1301–1306. doi:10.1002/smll.200701199 CrossRefPubMedGoogle Scholar
  33. Muñoz-Rojas D, Oró-Solé J, Gómez-Romero P (2008b) From nanosnakes to nanosheets: a matrix-mediated shape evolution. J Phys Chem C 112:20312–20318. doi:10.1021/jp808187w CrossRefGoogle Scholar
  34. Murray CB, Kagan CR, Bawendi MG (2000) Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu Rev Mater Sci 30:545–610. doi:10.1146/annurev.matsci.30.1.545 CrossRefGoogle Scholar
  35. Muthuswamy E, Ramadevi SS, Vasan HN, Garcia C, Noe L, Verelst M (2007) Highly stable Ag nanoparticles in agar-agar matrix as inorganic–organic hybrid. J Nanopart Res 9:561–567. doi:10.1007/s11051-006-9071-z CrossRefGoogle Scholar
  36. Narayanan R, El-Sayed MA (2004) Changing catalytic activity during colloidal platinum nanocatalysis due to shape changes: electron-transfer reaction. J Am Chem Soc 126:7194–7195. doi:10.1021/ja0486061 CrossRefPubMedGoogle Scholar
  37. Oliveira MM, Ugarte D, Zanchet D, Zarbin AJG (2005) Influence of synthetic parameters on the size, structure, and stability of dodecanethiol-stabilized silver nanoparticles. J Colloid Interface Sci 292:429–435. doi:10.1016/j.jcis.2005.05.068 CrossRefPubMedGoogle Scholar
  38. Oliveira MM, Castro EG, Canestraro CD, Zanchet D, Ugarte D, Roman LS, Zarbin AJG (2006) A simple two-phase route to silver nanoparticles/polyaniline structures. J Phys Chem B 110:1706–1769. doi:10.1021/jp060861f CrossRefGoogle Scholar
  39. Park P, Joo J, Kwon SG, Jang Y, Hyeon T (2007) Synthesis of monodisperse spherical nanocrystals. Angew Chem Int Ed 46:4630–4660. doi:10.1002/anie.200603148 CrossRefGoogle Scholar
  40. Porel S, Singh S, Harsha SS, Rao DN, Radhakrishnan TP (2005a) Nanoparticle-embedded polymer: in situ synthesis, free-standing films with highly monodisperse silver nanoparticles and optical limiting. Chem Mater 17:9–12. doi:10.1021/cm0485963 CrossRefGoogle Scholar
  41. Porel S, Singh S, Radhakrishnan TP (2005b) Polygonal gold nanoplates in a polymer matrix. Chem Commun 2387–2389. doi: 10.1039/b500536a
  42. Qu L, Dai L, Osawa E (2006) Shape/size-controlled syntheses of metal nanoparticles for site-selective modification of carbon nanotubes. J Am Chem Soc 128:5523–5532. doi:10.1021/ja060296u CrossRefPubMedGoogle Scholar
  43. Radziuk D, Skirtach A, Sukhorukov G, Shchukin D, Möhwald H (2007) Stabilization of silver nanoparticles by polyelectrolytes and poly(ethylene glycol). Macromol Rapid Commun 28:848–855. doi:10.1002/marc.200600895 CrossRefGoogle Scholar
  44. Rao CNR, Müller A, Cheetham AK (2004) The chemistry of nanomaterials: synthesis, properties and applications. Wiley-VCH, WeinheimGoogle Scholar
  45. Salata OV (2004) Applications of nanoparticles in biology and medicine. J Nanobiotechnol 2:3. doi:10.1186/1477-3155-2-3 CrossRefGoogle Scholar
  46. Singh N, Khanna PK (2007) In situ synthesis of silver nano-particles in polymethylmethacrylate. Mater Chem Phys 104:367–372. doi:10.1016/j.matchemphys.2007.03.026 CrossRefGoogle Scholar
  47. Sun Y, Xia Y (2002) Shape-controlled synthesis of gold and silver nanoparticles. Science 298:2176–2179. doi:10.1126/science.1077229 CrossRefPubMedADSGoogle Scholar
  48. Takagi D, Homma Y, Hibino H, Suzuki S, Kobayashi Y (2006) Single-walled carbon nanotube growth from highly activated metal nanoparticles. Nano Lett 6:2642–2645. doi:10.1021/nl061797g CrossRefPubMedADSGoogle Scholar
  49. Torres-Gómez G, Gómez-Romero P (1998) Conducting organic polymers with electroactive dopants. Synthesis and electrochemical properties of hexacyanoferrate-doped polypyrrole. Synth Met 98:95–102. doi:10.1016/S0379-6779(98)00150-7 CrossRefGoogle Scholar
  50. Walker CH, St. John JV, Wisian-Neilson P (2001) Synthesis and size control of gold nanoparticles stabilized by poly(methylphenylphosphazene). J Am Chem Soc 123:3846–3847. doi:10.1021/ja005812+ CrossRefPubMedGoogle Scholar
  51. Wang X, Egan CE, Zhou M, Prince K, Mitchell DRG, Caruso RA (2007) Effective gel for gold nanoparticle formation, support and metal oxide templating. Chem Commun 3060–3062. doi: 10.1039/b704825d
  52. Wiley B, Sun Y, Mayers B, Xia Y (2005) Shape-controlled synthesis of metal nanostructures: the case of silver. Chem Eur J 11:454–463. doi:10.1002/chem.200400927 CrossRefGoogle Scholar
  53. Wiley B, Sun Y, Xia Y (2007) Synthesis of silver nanostructures with controlled shapes and properties. Acc Chem Res 40:1067–1076. doi:10.1021/ar7000974 CrossRefPubMedGoogle Scholar
  54. Xiong Y, Xia Y (2007) Shape-controlled synthesis of metal nanostructures: the case of palladium. Adv Mater 19:3385–3391. doi:10.1002/adma.200701301 CrossRefGoogle Scholar
  55. Xue C, Li Z, Mirkin CA (2005) Large-scale assembly of single-crystal silver nanoprism monolayers. Small 1:513–516. doi:10.1002/smll.200400150 CrossRefPubMedGoogle Scholar
  56. Yin YD, Xu XL, Xia CJ, Ge XW, Zhang ZC (1998) Synthesis and characterization of poly(butyl acrylate-co-styrene)-silver nanocomposites by γ-radiation in W/O microemulsions. Chem Commun 941–942. doi: 10.1039/a800676h
  57. Zhang Z, Han M (2003) One-step preparation of size-selected and well-dispersed silver nanocrystals in polyacrylonitrile by simultaneous reduction and polymerization. J Mater Chem 13:641–643. doi:10.1039/b212428a CrossRefGoogle Scholar
  58. Zhang J, Liu H, Wang Z, Ming N (2007) Shape-selective synthesis of gold nanoparticles with controlled sizes, shapes, and plasmon resonances. Adv Funct Mater 17:3295–3303. doi:10.1002/adfm.200700497 CrossRefGoogle Scholar
  59. Zhu YJ, Qian YT, Li X, Zhang M (1998) A nonaqueous solution route to synthesis of polyacrylamide-silver nanocomposites at room temperature. Nanostruct Mater 10:673–678. doi:10.1016/S0965-9773(98)00096-8 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Omar Ayyad
    • 1
  • David Muñoz-Rojas
    • 1
  • Judith Oró-Solé
    • 2
  • Pedro Gómez-Romero
    • 1
  1. 1.Centro de Investigación en Nanociencia y Nanotecnología (CIN2), CSIC-ICNBellaterraSpain
  2. 2.Instituto de Ciencia de Materiales de Barcelona ICMAB (CSIC)BellaterraSpain

Personalised recommendations