Journal of Nanoparticle Research

, Volume 12, Issue 1, pp 327–335 | Cite as

Microwave technique applied to the hydrothermal synthesis and sintering of calcia stabilized zirconia nanoparticles

  • Antonino Rizzuti
  • Anna Corradi
  • Cristina Leonelli
  • Roberto Rosa
  • Roman Pielaszek
  • Witold Lojkowski
Research Paper

Abstract

This study is focused on the synthesis of zirconia nanopowders stabilized by 6%mol calcia prepared under hydrothermal conditions using microwave technology. Sodium hydroxide-based hydrolysis of zirconyl chloride solution containing calcium nitrate followed by microwave irradiation at the temperature of 220 °C for 30 min was sufficient to obtain white powders of crystalline calcia stabilized zirconia. By means of X-ray diffraction and transmission electron microscopy, it was shown that tetragonal zirconia nanocrystallites with a size of ca 7 nm and diameter/standard deviation ratio of 0.10 were formed. The effects of the [Ca2+] and [NaOH] as well as temperature and time of microwave irradiation on the density and specific surface area were evaluated. Sintering test of the tetragonal nanopowders at 1,300 °C in air was performed in a monomode microwave applicator. The sample was sintered to the density of 95% and the grain size, analyzed by field emission scanning electron microscopy, was in the range from 90 to 170 nm.

Keywords

Zirconia Nanostructures Microwave Sintering X-ray diffraction Electron microscopy 

References

  1. Agrawal D, Cheng J, Roy R (2003) Microwave processing of ceramics and metallic materials in single mode E field and H field. Adv Sci Technol Faenza Italy 31:381–388Google Scholar
  2. Buretea M, Empedocles S, Niu C, Scher EC (2004) Nanocomposites useful for waveguides and light concentrators. Patent Appl Publ WO 2004022637Google Scholar
  3. Caproni E, Muccillo R (2006) Preparation and characterization of zirconia-yttria/zirconia-magnesia composites. Mater Sci Forum 530–531:389–394. doi:10.4028/0-87849-423-5.389 CrossRefGoogle Scholar
  4. Castro RHR, Marcos PJB, Lorriaux A, Steil MC, Gengembre L, Roussel P, Gouvea D (2008) Interface excess and polymorphic stability of nanosized zirconia-magnesia. Chem Mater 20:3505–3511. doi:10.1021/cm703599r CrossRefGoogle Scholar
  5. Cushing BL, Kolesnichenko VL, O’Connor CJ (2004) Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem Rev 104:3893–3946. doi:10.1021/cr030027b CrossRefPubMedGoogle Scholar
  6. Dell’Agli G, Mascolo G (2000) Low temperature hydrothermal synthesis of ZrO2-CaO solid solutions. J Mater Sci 35:661–665. doi:10.1023/A:1004740830928 CrossRefGoogle Scholar
  7. Durrani SK, Akhtar J, Ahmad M, Hussain MA (2006) Synthesis and characterization of low density calcia stabilized zirconia ceramic for high temperature furnace application. Mater Chem Phys 100:324–328. doi:10.1016/j.matchemphys.2006.01.010 CrossRefGoogle Scholar
  8. Ebadzadeh T, Valefi M (2008) Microwave-assisted sintering of zircon. J Alloy Compd 448:246–249. doi:10.1016/j.jallcom.2007.02.032 CrossRefGoogle Scholar
  9. Ederyd S, Engqvist H, Axen N (2001) Tungsten carbide alloy with ultrafine surface for wear-resistant seal rings. Patent Appl Publ WO 2001025505Google Scholar
  10. Fergus JW (2006) Electrolytes for solid oxide fuel cells. J Power Sources 162:30–40. doi:10.1016/j.jpowsour.2006.06.062 CrossRefGoogle Scholar
  11. Fray DJ (1996) The use of solid electrolytes as sensors for applications in molten metals. Solid State Ion 86–88:1045–1054. doi:10.1016/0167-2738(96)00249-4 CrossRefGoogle Scholar
  12. Greenberg RJ, Mech BV (2003) Coated microfluidic delivery system. US Patent Appl Publ US 2003080085Google Scholar
  13. Haberko K, Pyda W (1984) Advances in ceramics 12. In: Claussen N, Rühle M, Heuer AH (eds) Science and technology of zirconia II. American Ceramic Society Inc, Columbus, Ohio, pp 774–783Google Scholar
  14. Kaysser W, Bartsch M, Peters M, Shulz U, Drasar C (2003) Functional gradients for novel microstructures. Adv Sci Technol Faenza Italy 31:341–353Google Scholar
  15. Kumar V, Achuthan AT, Sivanandan K, Divya PV, Rema KP (2006) Sol-gel synthesis of PZT-glass nanocomposites using a simple system and characterization. Int J Appl Ceram Technol 3:345–352. doi:10.1111/j.1744-7402.2006.02101.x CrossRefGoogle Scholar
  16. Leonelli C, Lojkowski W (2007) Main development directions in the application of microwave irradiation to the synthesis of nanopowders. Chem Today 25:34, 36–38Google Scholar
  17. Lojkowski W, Opalinska A, Strachowski T, Presz A, Gierlotka S, Grzanka E, Palosz B, Strek W, Hreniak D, Grigorjeva L, Millers D, Bondioli F, Leonelli C, Reszke E (2004) Microwave-driven hydrothermal synthesis of oxide nanopowders for applications in optoelectronics. In: Fech H-J, Werner M (eds) Nano-micro interface. Wiley, Weinheim, pp 163–180Google Scholar
  18. Mazaheri M, Zahedi AM, Hejazi MM (2008) Processing of nanocrystalline 8 mol% yttria-stabilized zirconia by conventional, microwave-assisted and two-step sintering. Mater Sci Eng A A492:261–267. doi:10.1016/jmsea200803023 Google Scholar
  19. Muccillo R, Buissa Netto RC, Muccillo ENS (2001) Synthesis and characterization of calcia fully stabilized zirconia solid electrolytes. Mater Lett 49:197–201. doi:10.1016/S0167-577X(00)00367-0 CrossRefGoogle Scholar
  20. O’Brien S, Yin M (2005) Nano-sized metal oxide particles, processes of making, compositions and uses thereof. Patent Appl Publ WO 2005060610Google Scholar
  21. Opalinska A, Leonelli C, Lojkowski W, Pielaszek R, Grzanka E, Chudoba T, Matysiak H, Wejrzanowski T, Kurzydlowski KJ (2006) Effect of pressure on synthesis of Pr-doped zirconia powders produced by microwave-driven hydrothermal reaction. J Nanomater 2006. doi:10.1155/JNM/2006/98769
  22. Park S-H, Ryu I-Y, Lee W-J, Kim D-J, Han J-S, Lee M-H (2007) Sinterability and mechanical properties of zirconia nanoparticles prepared by hydrothermal process. Solid State Phenom 124–126:1293–1296. doi:10.4028/3-908451-31-0.1293 CrossRefGoogle Scholar
  23. Pielaszek R (2003) Diffraction studies of microstructure of nanocrystals exposed to high pressure. PhD Thesis, Department of Physics, Warsaw UniversityGoogle Scholar
  24. Pyda W (2006) Morphology of zirconia nanopowders crystallised under hydrothermal conditions. Adv Sci Tech 45:194–199. doi:10.4028/3-908158-01-x.194 CrossRefGoogle Scholar
  25. Rangappa D, Ohara S, Naka T, Kondo A, Ishii M, Adschiri T (2007) Synthesis and organic modification of CoAl2O4 nanocrystals under supercritical water conditions. J Mater Chem 17:4426–4429. doi:10.1039/b705760a CrossRefGoogle Scholar
  26. Ringuede A, Mourot P, Lugano CA, Badot J-C, Cassir M (2006) Elaboration, characterization and electrical properties of ZrO2–In2O3 compounds with different compositions for intermediate temperature SOFC. J New Mater Electrochem Syst 9:201–208Google Scholar
  27. Rizzuti A, Veronesi P, Corradi A, Leonelli C, Lojkowski W, Pielaszek R (2008) Microwave sintering of zirconia based nanoceramic materials. Proceedings of the ICC2—second international conference on ceramics, 29 June–4 July 2008, VeronaGoogle Scholar
  28. Schneiders W, Reinstorf A, Ruhnow M, Rehberg S, Heineck J, Hinterseher I, Biewener A, Zwipp H, Rammelt S (2008) Effect of chondroitin sulphate on material properties and bone remodelling around hydroxyapatite/collagen composites. J Biomed Mater Res A 85A:638–645. doi:10.1002/jbm.a.31611 CrossRefGoogle Scholar
  29. Simeone D, Baldinozzi G, Gosset D, Dutheil M, Bulou A, Hansen T (2003) Monoclinic to tetragonal semireconstructive phase transition of zirconia. Phys Rev B. doi:10.1103/PhysRevB67064111
  30. Takehira K, Shishido T, Komatsu T, Hamakawa S, Kajioka H (2002) YSZ aided oxidation of C2–C4 hydrocarbons into oxygenates over MoO3 or V2O5. Solid State Ion 152–153:641–646. doi:10.1016/S0167-2738(02)00397-1 CrossRefGoogle Scholar
  31. Wejrzanowski T, Pielaszek R, Opalinska A, Matysiak H, Lojkowski W, Kurzydlowski KJ (2006) Quantitative methods for nanopowders characterization. Appl Surf Sci 253:204–208. doi:10.1016/j.apsusc.2006.05.089 CrossRefADSGoogle Scholar
  32. Williams DE, McGeehin P (1984) Solid state gas sensors and monitors. Electrochem 9:246–290CrossRefGoogle Scholar
  33. Yashima M, Kakihana M, Yoshimura M (1996) Metastable-stable phase diagrams in the zirconia-containing systems utilized in solid-oxide fuel cell application. Solid State Ion 86–88:1131–1149. doi:10.1016/0167-2738(96)00386-4 CrossRefGoogle Scholar
  34. Zheng X, Wang S, Wang X, Wang S, Wang X, Wu S (2005) Synthesis, characterization and catalytic property of ceria spherical nanocrystals. Mater Lett 59:2769–2773. doi:10.1016/j.matlet.2005.04.025 CrossRefGoogle Scholar
  35. Zhou M, Ahmad A (2006) Synthesis, processing and characterization of calcia-stabilized zirconia solid electrolytes for oxygen sensing applications. Mater Res Bull 41:690–696. doi:10.1016/j.materresbull.2005.10.018 CrossRefGoogle Scholar
  36. Zyryanov VV, Uvarov NF, Sadykov VA, Alikina GM, Ivashkevich LS, Ivanovskaya MI, Neophytides S (2004) Mechanochemical synthesis, structure, and properties of nanocrystalline metastable perovskites and fluorites for catalytic membrane reactors. J Struct Chem 45:S127–S132. doi:10.1007/s10947-006-0107-0 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Antonino Rizzuti
    • 1
  • Anna Corradi
    • 1
  • Cristina Leonelli
    • 1
  • Roberto Rosa
    • 1
  • Roman Pielaszek
    • 2
  • Witold Lojkowski
    • 2
  1. 1.Department of Materials and Environmental EngineeringUniversity of Modena and Reggio EmiliaModenaItaly
  2. 2.Laboratory of Nanomaterials, Institute of High Pressure PhysicsPolish Academy of ScienceWarsawPoland

Personalised recommendations