Skip to main content
Log in

Facile method for CLSM imaging unfunctionalized Au nanoparticles through fluorescent channels

  • Technology and Applications
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The microscopic visualization of metal nanoparticles has become a useful tool for the investigation of their applications in cell labeling and the study of their bio-effects. In the current study, we have developed a facile method with confocal laser scanning microscope (CLSM) to observe unfunctionalized Au nanoparticles through fluorescent channels. The sharp reflected signal and photostable property of the metal nanoparticles makes the present method very ideal for fluorescent co-localization, real-time imaging, and further quantitative analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alschinger M, Maniak M, Stietz F, Vartanyan T, Trager F (2003) Application of metal nanoparticles in confocal laser scanning microscopy: improved resolution by optical field enhancement. Appl Phys B 76:771–774. doi:10.1007/s00340-003-1182-y

    Article  ADS  CAS  Google Scholar 

  • Bhattacharya R, Patra CR, Verma R, Kumar S, Greipp PR, Mukherjee P (2007) Gold nanoparticles inhibit the proliferation of multiple myeloma cells. Adv Mater 19:711–716. doi:10.1002/adma.200602098

    Article  CAS  Google Scholar 

  • De Wall SL, Painter C, Stone JD, Bandaranayake R, Wiley DC, Mitchison TJ, Stern LJ, Dedecker BS (2006) Noble metals strip peptides from class II MHC proteins. Nat Chem Biol 2:197–201. doi:10.1038/nchembio773

    Article  PubMed  Google Scholar 

  • Delie F (1998) Evaluation of nano- and microparticle uptake by the gastrointestinal tract. Adv Drug Deliv Rev 34:221–233. doi:10.1016/S0169-409X(98)00041-6

    Article  PubMed  CAS  Google Scholar 

  • Frens G (1973) Controlled nucleation for the regulation of the particle size in monodisperse gold suspension. Nat Phys Sci (Lond) 241:20–22

    ADS  CAS  Google Scholar 

  • Geanacopoulos M, Gear AR (1988) Application of spray-freezing to the study of rapid platelet reactions by a quenched-flow approach. Thromb Res 52:599–607. doi:10.1016/0049-3848(88)90132-6

    Article  PubMed  CAS  Google Scholar 

  • Haberle W, Horber JK, Ohnesorge F, Smith DP, Binnig G (1992) In situ investigations of single living cells infected by viruses. Ultramicroscopy 42–44:1161–1167. doi:10.1016/0304-3991(92)90418-J

    Article  PubMed  Google Scholar 

  • Hoffman A, Goetz M, Vieth M, Galle PR, Neurath MF, Kiesslich R (2006) Confocal laser endomicroscopy: technical status and current indications. Endoscopy 38:1275–1283. doi:10.1055/s-2006-944813

    Article  PubMed  CAS  Google Scholar 

  • Inoue K, Kurosumi K, Deng ZP (1982) An improvement of the device for rapid freezing by use of liquid propane and the application of immunocytochemistry to the resin section of rapid-frozen, substitution-fixed anterior pituitary gland. J Electron Microsc (Tokyo) 31:93–97

    CAS  Google Scholar 

  • Itoh J, Sanno N, Matsuno A, Itoh Y, Watanabe K, Osamura RY (1997) Application of confocal laser scanning microscopy (CLSM) to visualize prolactin (PRL) and PRL mRNA in the normal and estrogen-treated rat pituitary glands using non-fluorescent Probes. Microsc Res Tech 39:157–167. doi:10.1002/(SICI)1097-0029(19971015)39:2<157::AID-JEMT7>3.0.CO;2-I

    Article  PubMed  CAS  Google Scholar 

  • Kienberger F, Stroh C, Kada G, Moser R, Baumgartner W, Pastushenko V, Rankl C, Schmidt U, Muller H, Orlova E, LeGrimellec C, Drenckhahn D, Blaas D, Hinterdorfer P (2003) Dynamic force microscopy imaging of native membranes. Ultramicroscopy 97:229–237. doi:10.1016/S0304-3991(03)00047-0

    Article  PubMed  CAS  Google Scholar 

  • Li JY, Wang XM, Wang CX, Chen BA, Dai YY, Zhang RY, Song M, Lv G, Fu DG (2007) The enhancement effect of gold nanoparticles in drug delivery and as biomarkers of drug-resistant cancer cells. ChemMedChem 2:374–378. doi:10.1002/cmdc.200600264

    Article  PubMed  CAS  Google Scholar 

  • Liu YP, Meyer-Zaika W, Franzka S, Schmid G, Tsoli M, Kuhn H (2003) Gold-cluster degradation by the transition of B-DNA into A-DNA and the formation of nanowires. Angew Chem Int Ed 42:2853–2857. doi:10.1002/anie.200250235

    Article  CAS  Google Scholar 

  • Murata F, Suzuki S, Tsuyama S, Suganuma T, Imada M, Furihata C (1985) Application of rapid freezing followed by freeze-substitution acrolein fixation for cytochemical studies of the rat stomach. Histochem J 17:967–980. doi:10.1007/BF01417946

    Article  PubMed  CAS  Google Scholar 

  • Pan Y, Neuss S, Leifert A, Fischler M, Wen F, Simon U, Schmid G, Brandau W, Jahnen-Dechent W (2007) Size-dependent cytotoxicity of gold nanoparticles. Small 3:1941–1949. doi:10.1002/smll.200700378

    Article  PubMed  CAS  Google Scholar 

  • Patel DV, McGhee CN (2007) Contemporary in vivo confocal microscopy of the living human cornea using white light and laser scanning techniques: a major review. Clin Exp Ophthalmol 35:71–88. doi:10.1111/j.1442-9071.2007.01423.x

    Article  Google Scholar 

  • Prasad V, Semwogerere D, Weeks ER (2007) Confocal microscopy of colloids. J Phys Condens Matter 19:113102–113126. doi:10.1088/0953-8984/19/11/113102

    Article  ADS  Google Scholar 

  • Rhode S, Breuer A, Hesse J, Sonnleitner M, Pagler TA, Doringer M, Schutz GJ, Stangl H (2004) Visualization of the uptake of individual HDL particles in living cells via the scavenger receptor class B type I. Cell Biochem Biophys 41:343–356. doi:10.1385/CBB:41:3:343

    Article  PubMed  CAS  Google Scholar 

  • Shukla R, Bansal V, Chaudhary M, Basu A, Bhonde RR, Sastry M (2005) Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview. Langmuir 21:10644–10654. doi:10.1021/la0513712

    Article  PubMed  CAS  Google Scholar 

  • Tkachenko AG, Xie H, Liu YL, Coleman D, Ryan J, Glomm WR, Shipton MK, Franzen S, Feldheim DL (2004) Cellular trajectories of peptide-modified gold particle complexes: comparison of nuclear localization signals and peptide transduction domains. Bioconjug Chem 15:482–490. doi:10.1021/bc034189q

    Article  PubMed  CAS  Google Scholar 

  • Tseng CY, Ling EA, Wong WC (1984) A scanning and transmission electron microscopic study of amoeboid microglial cells in the prenatal rat brain following a maternal injection of 6-aminonicotinamide. J Anat 138:733–743

    PubMed  CAS  Google Scholar 

  • White JG, Amos WB, Fordham M (1987) An evaluation of confocal versus conventional imaging of biological structures by fluorescence light microscopy. J Cell Biol 105:41–48. doi:10.1083/jcb.105.1.41

    Article  PubMed  CAS  Google Scholar 

  • Yi H, Leunissen J, Shi G, Gutekunst C, Hersch S (2001) A novel procedure for pre-embedding double immunogold-silver labeling at the ultrastructural level. J Histochem Cytochem 49:279–284

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We thank the State Key Program of Basic Research (973) (2007CB808000) for financial support and Dr. Gang Hu for editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Li.

Additional information

Lan Yuan and Wei Wei contributed equally to this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 1627 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuan, L., Wei, W., Li, J. et al. Facile method for CLSM imaging unfunctionalized Au nanoparticles through fluorescent channels. J Nanopart Res 11, 1219–1225 (2009). https://doi.org/10.1007/s11051-009-9618-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-009-9618-x

Keywords

Navigation