Journal of Nanoparticle Research

, Volume 12, Issue 1, pp 301–305 | Cite as

A novel method for preparing lithium manganese oxide nanorods from nanorod precursor

Research Paper

Abstract

Lithium manganese oxide nanorods were prepared from manganese dioxide nanorods precursor. The structure and morphology were confirmed by X-ray diffraction (XRD) and transmission electron microscope (TEM). The data of the Rietveld refinement indicate that the nanorods preferentially grow along the [111] direction. After charge–discharge test at 1.0 mA cm−2 in 3.0–4.4 V, the nanorods LiMn2O4 showed the 134.5 mAh g−1 initial discharge capacity and only lost 1.1% of initial capacity after 30 cycles, which is better than that of bulk particles LiMn2O4 prepared by traditional solid-state reaction method. This effective and simple route to synthesis nanorods LiMn2O4 from one-dimensional (1D) precursor could also be extended to prepare 1D other nanomaterials with special electrochemical properties.

Keywords

Lithium-ion batteries Nanorods MnO2 LiMn2O4 Cycleability 

References

  1. Amatucci GG, Schmutz CN, Blyr A et al (1997) Materials’ effects on the elevated and room temperature performance of C/LiMn2O4 Li-ion batteries. J Power Source 69:11–25. doi:10.1016/S0378-7753(97)02542-1 CrossRefGoogle Scholar
  2. Blyr A, Sigala C, Amatucci GG, Guyomard D, Chabre Y, Tarascon JM (1998) Self-discharge of LiMn2O4/C Li-ion cells in their discharged state—understanding by means of three-electrode measurements. J Electrochem Soc 145:194–209. doi:10.1149/1.1838235 CrossRefGoogle Scholar
  3. Che G, Lakshmi BB, Fisher ER, Martin CR (1998) Carbon nanotubule membranes for electrochemical energy storage and production. Nature 393:346–349. doi:10.1038/30694 CrossRefADSGoogle Scholar
  4. Fang H, Li L, Yang Y, Yan G, Li G (2008) Low-temperature synthesis of highly crystallized LiMn2O4 from alpha manganese dioxide nanorods. J Power Source 184:494–497. doi:10.1016/j.jpowsour.2008.04.011 CrossRefGoogle Scholar
  5. Kang SH, Goodenough JB (2000) LiMn2O4 spinel cathode material showing no capacity fading in the 3 V range. J Electrochem Soc 147:3621–3627. doi:10.1149/1.1393949 CrossRefGoogle Scholar
  6. Kang SH, Goodenough JB, Radenberg LK (2001) Effect of ball-milling on 3-V capacity of lithium-manganese oxiospinel cathodes. Chem Mater 13:1758–1764. doi:10.1021/cm000920g CrossRefGoogle Scholar
  7. Li W, Dahn JR (1995) Lithium-ion cells with aqueous electrolytes. J Electrochem Soc 142:1742–1745. doi:10.1149/1.2044187 CrossRefGoogle Scholar
  8. Li N, Patrissi CJ, Che GL, Martin CR (2000) Rate capabilities of nanostructured LiMn2O4 electrodes in aqueous electrolyte. J Electrochem Soc 147(6):2044–2049. doi:10.1149/1.1393483 CrossRefGoogle Scholar
  9. Lim S, Cho J (2008) PVP-Assisted ZrO2 coating on LiMn2O4 spinel cathode nanoparticles prepared by MnO2 nanowire templates. Electrochem Commun 10:1478–1481. doi:10.1016/j.elecom.2008.07.028 CrossRefGoogle Scholar
  10. Liu H, Cheng C, Hu Z, Zhang K (2007) The effect of ZnO coating on LiMn2O4 cycle life in high temperature for lithium secondary batteries. Mater Chem Phys 101:276–279. doi:10.1016/j.matchemphys.2006.05.006 CrossRefADSGoogle Scholar
  11. Nishizawa M, Mukai K, Kuwabata S, Martin CR, Yama H (1997) Template synthesis of polypyrrole-coated spinel LiMn2O4 nanotubules and their properties as cathode active materials for lithium batteries. J Electrochem Soc 144:1923–1927CrossRefGoogle Scholar
  12. Patzke GR, Krumeich F, Nesper R (2002) Oxidic nanotubes and nanorods—anisotropic modules for a future nanotechnology. Angew Chem Int Ed 41:2446–2461. doi:10.1002/1521-3773(20020715)41:14<2446::AID-ANIE2446>3.0.CO;2-K CrossRefGoogle Scholar
  13. Thackeray MM (1997) Manganese oxides for lithum batteries. Prog Solid State Chem 25:1–17. doi:10.1016/S0079-6786(97)81003-5 CrossRefGoogle Scholar
  14. Xun W, Yadong L (2002) Selected-control hydrothermal synthesis of -α and β-MnO2 single crystal nanowires. J Am Chem Soc 124:2880–2881. doi:10.1021/ja0177105 CrossRefGoogle Scholar
  15. Zhang L, Yu JC, Xu AW, Li Q, Kwong KW, Wu L (2003) A self-seeded, surfactant-directed hydrothermal growth of single crystalline lithium manganese oxide nanobelts from the commercial bulky particles. Chem Commun 2910–2911. doi:10.1039/b310998d

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Key Laboratory of Catalysis and Materials Science of Hubei Province, College of Chemistry and Materials ScienceSouth-Central University for NationalitiesWuhanPeople’s Republic of China

Personalised recommendations