Journal of Nanoparticle Research

, Volume 12, Issue 1, pp 293–300 | Cite as

Study on magnetic fluid optical fiber devices for optical logic operations by characteristics of superparamagnetic nanoparticles and magnetic fluids

Research Paper

Abstract

We propose two optical fiber-based schemes using two magnetic fluid optical fiber modulators in series or in parallel for optical logic signal processing and operation. Here, each magnetic fluid optical fiber modulator consists of a bare multimode fiber surrounded by magnetic fluid in which the refractive index is adjustable by applying external magnetic fields amplifying the input electrical signal to vary the transmission intensity of the optical fiber-based scheme. The physical mechanisms for the performances of the magnetic fluid optical fiber devices, such as the transmission loss related to Boolean number of the logic operation as well as the dynamic response, are studied by the characteristics of superparamagnetic nanoparticles and magnetic fluids. For example, in the dynamic response composed of the retarding and response sub-procedures except the response times of the actuation coil, the theoretical evaluation of the retarding time variation with cladding magnetic fluids length has good agreement with the experimental results.

Keywords

Magnetic fluid Optical fiber modulator Superparamagnetic nanoparticles Refractive index Colloids 

References

  1. Cancellieri G, Chiaraluce F, Gambi E, Pierleoni P (1995) Coupled-soliton photonic logic gates: practical design procedures. J Opt Soc Am B 12:1300–1306CrossRefADSGoogle Scholar
  2. Cernak J, Macko P, Sparkova MK (1991) Aggregation and growth processes in thin films of magnetic fluid. J Phys D Appl Phys 24:1609–1615CrossRefADSGoogle Scholar
  3. Chieh JJ, Yang SY, Chao YH, Horng HE, Hong CY, Yang HC (2005) Dynamic response of optical fiber modulator by using magnetic fluid as a cladding layer. J Appl Phys 97:43104CrossRefGoogle Scholar
  4. Chieh JJ, Yang SY, Horng HE, Hong CY, Yang HC (2007) Magnetic-fluid optical-fiber modulators via magnetic modulation. Appl Phys Lett 90: 133505-3Google Scholar
  5. Davies HW, Llewellyn JP (1980) Magneto-optic effects in ferrofluids. J Phys D Appl Phys 13:2327–2336. doi:10.1088/0022-3727/13/12/018 CrossRefADSGoogle Scholar
  6. Dennis CL, Jackson AJ, Borchers JA, Ivkov R, Foreman AR, Hoopes PJ, Strawbridge R, Pierce Z, Goerntiz E, Lau JW, Gruettner C (2008) The influence of magnetic and physiological behaviour on the effectiveness of iron oxide nanoparticles for hyperthermia. J Phys D Appl Phys 41:134020CrossRefADSGoogle Scholar
  7. Dutta NK, Jaques J (2005) Semiconductor optical amplifier based optical logic devices. Proc SPIE 6014:60140XGoogle Scholar
  8. Goswami D (2003) Optical computing. Resonance 8(6):56–71Google Scholar
  9. Hashimoto M, Kitayama KI, Ishibashi S, Fukuda Y (1994) GaAs-pin/ferroelectric liquid crystal spatial light modulator (GaAs-pin/FLC-SLM) and its applications. Electron Commun Jpn 77:1–14Google Scholar
  10. Hong CY, Yang SY, Fang KL, Horng HE, Yang HC (2006) Mach–Zehnder interferometer by utilizing phase modulation of transmitted light through magnetic fluid films possessing tunable refractive index. J Magn Magn Mater 297:71–75. doi:10.1016/j.jmmm.2005.02.059 CrossRefADSGoogle Scholar
  11. Horng HE, Hong CY, Lee SL, Ho CH, Yang SY, Yang HC (2000) Magnetochromatics resulted from optical gratings of magnetic fluid films subjected to perpendicular magnetic fields. J Appl Phys 88:5904–5908. doi:10.1063/1.1319331 CrossRefADSGoogle Scholar
  12. Horng HE, Yang SY, Tse WS, Yang HC, Luo W, Hong CY (2002) Magnetically modulated optical transmission of the magnetic fluid films. J Magn Magn Mater 252:104–106. doi:10.1016/S0304-8853(02)00629-7 CrossRefADSGoogle Scholar
  13. Horng HE, Chen CS, Fang KL, Yang SY, Chieh JJ, Hong CY, Yang HC (2004) Tunable optical switch using magnetic fluids. Appl Phys Lett 85:5592–5594. doi:10.1063/1.1833564 CrossRefADSGoogle Scholar
  14. Horng HE, Chieh JJ, Chao YH, Yang SY, Hong CY, Yang HC (2005) Designing optical-fiber modulators by using magnetic fluids. Opt Lett 30:543–545. doi:10.1364/OL.30.000543 CrossRefPubMedADSGoogle Scholar
  15. Huang YW, Hu ST, Yang SY, Horng HE, Hung JC, Hong CY, Yang HC (2004) Tunable diffraction of magnetic fluid films and its potential application in course wave-division multiplexing. Opt Lett 29:1867–1869CrossRefPubMedADSGoogle Scholar
  16. Jeyadevan B, Nakatani I (1999) Characterization of field-induced needle-like structures in ionic and water-based magnetic fluids. J Magn Magn Mater 201:62–65CrossRefADSGoogle Scholar
  17. Jiang W, Yang HC, Yang SY, Horng HE, Hung JC, Chen YC, Hong CY (2004) Preparation and properties of superparamagnetic nanoparticles with narrow size distribution and biocompatible. J Magn Magn Mater 283:210–214CrossRefADSGoogle Scholar
  18. Johnson KM, Moddel G (1989) Motivations for using ferroelectric liquid crystal spatial light modulators in neurocomputing. Appl Opt 28:4888–4899CrossRefADSGoogle Scholar
  19. Li Z, Liu Y, Zhang S, Ju H, de Waardt H, Khoe GD, Dorren HJS, Lenstra D (2005) All-optical logic gates using semiconductor optical amplifier assisted by optical filter. Electron Lett 41:1397–1399CrossRefGoogle Scholar
  20. Llewellyn JP (1983) Form birefringence in ferrofluids. J Phys D Appl Phys 16:95–104. doi:10.1088/0022-3727/16/1/014 CrossRefADSGoogle Scholar
  21. Möller W, Kreyling WG, Kohlhäufl M, Häussinger K, Heyder J (2001) Macrophage functions measured by magnetic microparticles in vivo and in vitro. J Magn Magn Mater 225:218–225CrossRefADSGoogle Scholar
  22. Möller W, Barth W, Kohlhäufl M, Häussinger K, Kreyling WG (2006) Motion and twisting of magnetic particles ingested by alveolar macrophages in the human lung: effect of smoking and disease. BioMagn Res Tech 4:1–14CrossRefGoogle Scholar
  23. Peccianti M, Conti C, Assanto G, Luca AD, Umeton C (2002) All-optical switching and logic gating with spatial solitons in liquid crystals. Appl Phys Lett 81:3335–3337. doi:10.1063/1.1519101 CrossRefADSGoogle Scholar
  24. Sawada T, Kikura H, Yamanaka G, Matsuzaki M, Aritomi M, Nakatani I (1999) Visualization of clustering on nonmagnetic and ferromagnetic particles in magnetic fluids. In: Proceedings of the optical diagnostics for fluids/heat/combustion and photomechanics for solid, pp 389–396Google Scholar
  25. Sharaiha A (2004) Semiconductor optical amplifiers for future optical networks. Proceedings of Information and Communication Technologies: From Theory to Applications, pp 165–166Google Scholar
  26. Son CW, Kim SH, Jhon YM, Byun YT, Lee S, Woo DH, Kim SH, Yoon TH (2007) Realization of all-optical XOR, NOR, and NAND gates in single format by using semiconductor optical amplifiers. Jpn J Appl Phys 46:232–234. doi:10.1143/JJAP.46.232 CrossRefADSGoogle Scholar
  27. Takaki Y, Ohzu H (1990) Optical half-adder using wavefront superposition. Appl Opt 29:4351–4358CrossRefADSGoogle Scholar
  28. Wang Y, Wang ZH, Bialkowski ME (2000) All-optical logic devices with cascaded nonlinear couplers. Appl Opt 39:4143–4152. doi:10.1364/AO.39.004143 CrossRefPubMedADSGoogle Scholar
  29. Yang SY, Horng HE, Shiao YT, Hong CY, Yang HC (2006) Photonic-crystal resonant effect using self-assembly ordered structures in magnetic fluid films under external magnetic fields. J Magn Magn Mater 307:43–47. doi:10.1016/j.jmmm.2006.03.038 CrossRefADSGoogle Scholar
  30. Zahn M (2001) Magnetic fluid and nanoparticle applications to nanotechnology. J Nanopart Res 3:73–78. doi:10.1023/A:1011497813424 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Institute of Electro-optical Science and TechnologyNational Taiwan Normal UniversityTaipeiTaiwan, ROC
  2. 2.Department of Mechanical EngineeringNan-Kai University of TechnologyNantou CountyTaiwan, ROC
  3. 3.Department of PhysicsNational Taiwan UniversityTaipeiTaiwan, ROC

Personalised recommendations