Journal of Nanoparticle Research

, Volume 11, Issue 5, pp 1227–1233 | Cite as

Ferroelectric PbTiO3 nanostructures onto Si-based substrates with size and shape control

Technology and Applications

Abstract

A bottom-up approach based on the use of a microemulsion-assisted chemical solution deposition method, previously developed for the fabrication of PbTiO3 nanostructures onto single crystal SrTiO3 substrates, is used here on polycrystalline Pt/Si-based substrates, aiming at their integration with the current microelectronics technology. This bottom-up approach not only does not produce any damage to the nanostructures, thus not affecting noticeably their ferroelectric properties, but also solves some of the problems associated to those approaches that use the microstructural instability of ultrathin films, where islands with different shapes and sizes (single or bimodal log-normal distributions) are obtained. In this case, normal (Gaussian) size distributions are obtained, with average lateral sizes of ~70 nm, weakly depending on the solution concentration. These results show that the growth process of the nanoparticles takes place independently from one another inside the isolated micelles of the precursor solution, whose shape and size distribution therefore control effectively those of the PbTiO3 nanostructures.

Keywords

Ferroelectric Nanostructure Lead titanate Sol–gel Chemical solution deposition 

References

  1. Alemany C, Jiménez R, Revilla J, Mendiola J, Calzada ML (1999) Pulsed hysteresis loops on ferroelectric thin films. J Phys D: Appl Phys 32:L79–L82CrossRefADSGoogle Scholar
  2. Alexe M, Hesse D (2006) Self-assembled nanoscale ferroelectrics. J Mater Sci 41:1–11CrossRefADSGoogle Scholar
  3. Auciello O, Scott JF, Ramesh R (1998) The physics of ferroelectric memories. Phys Today 51:22–27CrossRefGoogle Scholar
  4. Bühlmann S, Muralt P, Von Allmen S (2004) Lithography-modulated self-assembly of small ferroelectric Pb(Zr, Ti)O3 single crystals. Appl Phys Lett 84(14):2614–2616CrossRefADSGoogle Scholar
  5. Calzada ML, Sirera R, Carmona F, Jiménez B (1995) Investigations of a diol-based sol–gel process for the preparation of lead titanate materials. J Am Ceram Soc 78(7):1802CrossRefGoogle Scholar
  6. Calzada ML, Torres M, Fuentes-Cobas LE, Mehta A, Ricote J, Pardo L (2007) Ferroelectric self-assembled PbTiO3 perovskite nanostructures onto (100)SrTiO3 substrates from a novel microemulsion aided sol–gel preparation method. Nanotechnology 18:375603CrossRefGoogle Scholar
  7. Clemens S, Schneller T, Van der Hart A, Peter F, Waser R (2005) Registered deposition of nanoscale ferroelectric grains by template-controlled growth. Adv Mater 17:1357–1361CrossRefGoogle Scholar
  8. Clemens S, Röhrig S, Rüdiger A, Schneller T, Waser R (2006) Variable size and shape distribution of ferroelectric nanoislands by chemical mechanical polishing. Small 4:500–502CrossRefGoogle Scholar
  9. Chu MW, Szafraniak I, Scholz R, Harnagea C, Hesse D, Alexe M, Gösele U (2004) Impact of misfit dislocations on the polarization instability of epitaxial nanostructured ferroelectric perovskites. Nature Mater 3(2):87–90CrossRefADSGoogle Scholar
  10. Damjanovic D (1998) Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics. Rep Prog Phys 61:1267–1324CrossRefADSGoogle Scholar
  11. Dawber S, Szafraniak I, Alexe M, Scott JF (2003) Self-patterning of arrays of ferroelectric capacitors: description by theory of substrate mediated strain interactions. J Phys: Condes Mater 15:L667–L671CrossRefADSGoogle Scholar
  12. Gao Y, Koumoto K (2005) Bioinspired ceramic thin film processing: present status and future perspectives. Cryst Growth Des 5(5):1983–2017CrossRefGoogle Scholar
  13. Gruverman A, Kholkin A (2006) Nanoscale ferroelectrics: processing, characterization and future trends. Rep Prog Phys 69:2443–2474CrossRefADSGoogle Scholar
  14. Herrig H, Hempelmann R (1996) A colloidal approach to nanometre-sized mixed oxide ceramic powders. Mater Lett 27:287–292CrossRefGoogle Scholar
  15. Jung DJ, Morrison FD, Dawber M, Kim HH, Kim K, Scott JF (2004) Effect of microgeometry on switching and transport lead zirconate titanate capacitors; implications for etching of nanoferroelectrics. J Appl Phys 95:4968–4975CrossRefADSGoogle Scholar
  16. Kronholz S, Rathgeber S, Karthäuser S, Kohlstedt H, Clemens S, Schneller T (2006) Self-assembly of diblock-copolymer micelles for template-based preparation of PbTiO3 nanograins. Adv Funct Mater 16:2346–2354CrossRefGoogle Scholar
  17. Landfester K (2001) The generation of nanoparticles in miniemulsions. Adv Mater 13(10):765–768CrossRefGoogle Scholar
  18. Li F, Vipulanandan C (2007) Characterization of Y2BaCuO3 nanoparticles syntesized by nano-emulsion method. J Nanopart Res 2007(9):841–852CrossRefGoogle Scholar
  19. Pande CS (1987) On a stochastic-theory of grain-growth. Acta Metall 35(11):2671–2678CrossRefGoogle Scholar
  20. Phillips NJ, Calzada ML, Milne SJ (1992) Sol–gel-derived lead titanate films. J Non-Cryst Solids 147–148:285–290CrossRefGoogle Scholar
  21. Ricote J, Pardo L (1996) Microstructure-properties relationships in samarium modified lead titanate piezoceramics.1. Quantitative study of the microstructure. Acta Mater 44(3):1155–1167CrossRefGoogle Scholar
  22. Ricote J, Holgado S, Huang Z, Ramos P, Fernández R, Calzada ML (2008) Fabrication of continuous ultrathin ferroelectric films by chemical solution deposition methods. J Mater Res 23(10):2787–2794CrossRefADSGoogle Scholar
  23. Rüdiger A, Schneller T, Roelofs A, Tiedke S, Schmitz T, Waser R (2005) Nanosize ferroelectric oxide—tracking down the superparaelectric limit. Appl Phys A 80:1247–1255CrossRefGoogle Scholar
  24. Scott JF, Morrison FD, Miyake M, Zubko P (2006) Nano-ferroelectric materials and devices. Ferroelectrics 336:237–245CrossRefGoogle Scholar
  25. Seifert A, Vojta A, Speck JS, Lange FF (1996) Microstructural instability in single-crystal thin films. J Mater Res 11(6):1470–1482CrossRefADSGoogle Scholar
  26. Sirera R, Leinen D, Rodríguez-Castellón E, Calzada ML (1999) Processing effects on the compositional depth profile of ferroelectric sol–gel Ca-PbTiO3 thin films. Chem Mater 11:3437CrossRefGoogle Scholar
  27. 2008 SSRL Science Highlights (2008). Standford Synchrotron Radiation Laboratory, March 2008. http://www.ssrl.slac.standford.edu/researcg/highlights_archive/
  28. Stanishevsky A, Nagaraj B, Melngailis J, Ramesh R, Kriachtchev L, McDaniel E (2002) Radiation damage and its recovery in focussed ion beam fabricated ferroelectric capacitors. J Appl Phys 92:3275–3278CrossRefADSGoogle Scholar
  29. Tang JL, Zhu MK, Chen C, Hou YD, Wang H, Yan H (2008) Perovskite Pb(Sc1/2Nb1/2)O3 nanopowders synthesised by surfactant-modulated precipitation. J Nanopart Res. doi: 10.1007/s11051-008-9393-0
  30. Torres M, Alonso M, Calzada ML, Pardo L (2009) Influence of the substrate surface on the self-assembly of ferroelectric PbTiO3 nanostructures obtained by microemulsion assisted Chemical Solution Deposition. Ferroelectrics (in press)Google Scholar
  31. Waser R, Rüdiger A (2004) Ferroelectrics—pushing towards the digital storage limit. Nature Mater 3:81–82CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • M. L. Calzada
    • 1
  • M. Torres
    • 1
  • J. Ricote
    • 1
  • L. Pardo
    • 1
  1. 1.Institute de Ciencia de Materiales de Madrid (CSIC)MadridSpain

Personalised recommendations